Todo el quehacer universitario en sus manos. >
03 Ciencias Básicas >
(Ciencias Básicas) Articulos >
Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/123456789/8397
|
Título : | A new approach to study the dynamics of the modified Newton’s method to multiple roots |
Autor : | Cadenas Román, Carlos Eduardo |
Palabras clave : | Nonlinear equations Modified Newton’s method Dynamics Multiple roots Nonlinear algebraic or transcendental equations Single equations AMS subject classifications: 65H05 |
Fecha de publicación : | mar-2019 |
Editorial : | Société des Sciences Mathématiques de Roumanie |
Citación : | Cadenas C. (2019). A new approach to study the dynamics of the modified Newton’s method to multiple roots. Bull. Math. Soc. Sci. Math. Roumanie Tome 62 (110), No. 1, 2019, 67–75 |
Citación : | Bull. Math. Soc. Sci. Math. Roumanie (N.S.) |
Resumen : | A new approach to study the dynamics of the Modified Newton’s method due to Schr¨oder is presented. This is a very simple but general approach that allows the study of the dynamics of methods to solve nonlinear equations, particularly when these have two roots with different multiplicity. Then, using the classical procedure to study the dynamics of iterative methods in the Riemann sphere, the stability of the fixed points and the parameter space associated with the critical point obtained are studied. Finally, dynamical planes and basins of attraction that confirm the results are shown. |
URI : | http://hdl.handle.net/123456789/8397 |
ISSN : | 1220-3874 |
Aparece en las colecciones: | (Ciencias Básicas) Articulos
|
Ficheros en este ítem:
Fichero |
Descripción |
Tamaño | Formato |
ccadenasr.pdf | Cadenas C. (2019). A new approach to study the dynamics of the modified Newton’s method to multiple roots. Bull. Math. Soc. Sci. Math. Roumanie Tome 62 (110), No. 1, 2019, 67–75 | 347,9 kB | Adobe PDF | Visualizar/Abrir |
|
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
|