

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERIA DIRECCIÓN DE ESTUDIOS PARA GRADUADOS DOCTORADO EN INGENIERÍA

Comportamiento Tribológico De Un Acero Inoxidable Austenítico Ferrítico Para Aplicaciones En Bioingeniería

Autor: Prof. Jorge Emir Romero Contreras Tutor: Prof. Sandra Bivieska Cabello Sequera

Valencia, 23 de Noviembre 2020

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERIA DIRECCIÓN DE ESTUDIOS PARA GRADUADOS DOCTORADO EN INGENIERÍA

COMPORTAMIENTO TRIBOLÓGICO DE UN ACERO INOXIDABLE AUSTENÍTICO FERRÍTICO PARA APLICACIONES EN BIOINGENIERÍA

Autor: Prof. Jorge Emir Romero Contreras

Tesis Doctoral presentada ante la llustre Universidad de Carabobo para optar al Título de Doctor en Ingeniería

Valencia, 23 de Noviembre 2020

Valencia, 23 de Noviembre de 2020

En atención a lo dispuesto en los artículos 148, 137 y 138 del Reglamento de Estudios de Postgrado de la Universidad de Carabobo, Gaceta Oficial Extraordinaria N° 619 del 22 de julio de 2016, quienes suscribimos como jurado designado por el Consejo de Postgrado de la Facultad de Ingeniería y según oficio **CPFI- 001- DFI**, de fecha 20/02/2020, para revisar y evaluar la Tesis Doctoral Titulada:

Comportamiento tribológico de un acero inoxidable austenítico - ferrítico para aplicaciones en bioingeniería

Bajo la línea de investigación: Materiales y Procesos de Conformado.

Presentado por el Estudiante graduado **MS. ING. JORGE EMIR ROMERO CONTRERAS**, cédula de identidad **V-6.829.276**, para optar al título de Doctor en Ingeniería, ha decidido que el mismo está:

Apellidos y Nombres del Jurado	Cédula de identidad	Veredicto individual
DR. CESAR SEIJAS (PRESIDENTE)	V-4.567.093	Aprobado
DR. AGUSTÍN MEJÍAS (JURADO INTERNO)	V-9.645.014	Aprobado
DR. TEODORO GARCÍA (JURADO INTERNO)	V- 7.182.927	Aprobado
DR. BELKIS AVALO (JURADO EXTERNO)	V- 5.862.088	Aprobado
DR. SANDRA CABELLO (JURADO EXTERNO)	V – 13.046.449	Aprobado
Veredicto final:		
Aprob	bado	

Tomando en cuenta que las razones que motivan la decisión son:

- 1. El análisis de la situación contexto o problema fue correcto
- 2. La fundamentación teórica fue la requerida para esta investigación
- 3. El método desarrollado fue novedoso y efectivo
- 4. Los análisis derivados produjeron conclusiones relevantes
- 5. Las fuentes bibliográficas fueron adecuadamente consultadas y reflejadas en la investigación

Cada miembro del jurado constituido de manera virtual, a viva voz expresó su veredicto individual el cual quedó grabado por el Administrador (Host – Hospedador) de la Plataforma Google Meet acordado para esta presentación, la Profesora. DR. LISSETTE JIMENEZ, cédula de identidad V – 14.184.783. y del Profesor ING. DAVID DUARTE, cédula de identidad V – 13.324.457.

Acta de discusión y veredicto del Jurado en la Presentación de Tesis Doctoral en modalidad virtual TD-3

Cofing.

Firma Presidente del Jurado Dr. Cesar Seijas

Firma Miembro del Jurado Dr. Agustín Mejías

el texto aquí

Firma Miembro del Jurado Dr. Teodoro García

Firma Miembro del Jurado Dr. Belkis Avalo Sandrof delles

Firma Miembro del Jurado Dr. Sandra Cabello

Comentarios adicionales: No hay comentarios adicionales

Importante: Esta acta debe ser enviada en formato digital al presidente del jurado, con copia a todos los

miembros del Jurado.

Contenido

LIS	TA D	E FIG	URAS VII
LIS	TA D	E TAB	BLASXIII
DE	DICA	TORI	ΑΧν
AG	RAD	ECIM	IENTOXVI
RE	SUM	EN	XVII
IN	FROE	DUCCI	ÓN1
1.	EL	PROB	LEMA DE INVESTIGACIÓN3
-	1.1.	Plan	ITEAMIENTO DEL PROBLEMA
-	1.2.	Obje	TIVOS DE INVESTIGACIÓN
-	1.3.	Just	IFICACIÓN DE LA INVESTIGACIÓN5
-	1.4.	Limi	TACIONES Y DELIMITACIONES
2.	MA	RCO	TEÓRICO9
4	2.1.	Ante	ECEDENTES DE LA INVESTIGACIÓN9
Ĩ	2.2.	Base	S TEÓRICAS
	2.2	.1.	Aceros inoxidables en tribología14
	2.2	.2.	El Acero Inoxidable Dúplex como biomaterial15
	2.2	.3.	Principios básicos de Fricción y Desgaste
	2.2	.4.	Fundamentos del Desgaste por Deslizamiento
	2.2	.5.	Fundamentos del Desgaste por Frotamiento26
3.	MA	RCO	METODOLÓGICO35
	3.1.	Nive	L Y DISEÑO DE LA INVESTIGACIÓN
	3.2.	Esta	do del Arte y Definición de los Parámetros de Ensayos

3.3	Adquisición del material	1
3.4.	PREPARACIÓN DE LAS MUESTRAS4	2
3.5. SUPER	CARACTERIZACIÓN DE LA MICROESTRUCTURA, COMPOSICIÓN QUÍMICA Y PROPIEDADES	2
3.6.	EQUIPO DE ENSAYO TRIBOLÓGICO4	3
3.7.	DISEÑO EXPERIMENTAL	5
3.8	ANÁLISIS ESTADÍSTICO DE LOS DATOS	7
3.9.	EVALUACIÓN DE LA HUELLA DE DESGASTE4	9
3.9 fro	9.1. Determinación del volumen y coeficiente de desgaste para el ensayo de tamiento en tribómetro bola sobre plano4.	9
3.9	9.2. Identificación del régimen y mecanismo de desgaste por frotamiento	0
3.9 en	9.3. Determinación el coeficiente de fricción, el volumen y el coeficiente de desgast tribómetro bola sobre anillo5.	е 1
4. RE	SULTADOS Y DISCUSIÓN5	5
4.1.	Composición química y la microestructura del material5	5
4.2.	PROPIEDADES SUPERFICIALES DEL MATERIAL	7
4.2	2.1 Probetas para deslizamiento en tribómetro bola sobre anillo	7
4.1	1.2 Probetas para frotamiento en tribómetro bola sobre plano	8
4.2.	COMPORTAMIENTO ANTE LA FRICCIÓN POR DESLIZAMIENTO5	9
4.2 bol	2.1 Análisis fenomenológico la respuesta de fricción por deslizamiento en tribómetro la sobre anillo	9
4.2 sol	2.2 Análisis estadístico del ensayo de fricción por deslizamiento en tribómetro bola bre anillo6	3
4.3.	Comportamiento ante el desgaste por adhesión	6

4.3	.1 Análisis fenomenológico del volumen y coeficiente de desgaste en tribómetro)
bol	a sobre anillo	66
4.3	.2 Análisis estadístico del volumen de desgaste en tribómetro bola sobre anillo.	70
4.3	.3. Análisis tribológico mediante microscopia del desgaste en tribómetro bola	71
SOD		/1
4.4.	COMPORTAMIENTO ANTE EL DESGASTE POR FROTAMIENTO	79
4.4	.1 Datos del volumen y coeficiente de desgaste en tribómetro bola sobre plano	79
4.4	.2 Efecto de los parámetros variados en el desgaste por frotamiento en	
trib	ómetro bola sobre plano	82
4.4	.3 Análisis estadístico de datos de desgaste por frotamiento en tribómetro bola	
sob	re plano	85
4.4	.4. Observaciones mediante microscopia óptica y electrónica de Barrido del	
des	gaste por frotamiento en tribómetro bola sobre plano	88
5. CO	NCLUSIONES1	05
TRABAJ	O A FUTURO1	09
REFERE	NCIAS BIBLIOGRÁFICAS1	11
ANEXO	S1	17
ANEXC	A. Certificado de Inspección de origen SAF 25071	19
ANEXC	B. PROBETA PARA ENSAYO EN TRIBÓMETRO BOLA SOBRE ANILLO	20
Anexo) С. Ме́торо Тадисні	22

Lista de Figuras

Figura 2. 1. Fuerza de Fricción en (a) rodamiento, (b) deslizamiento18
Figura 2. 2. Configuraciones básicas de tipos de tribómetros 21
Figura 2. 3. Modelo de (a) la grieta subsuperficial debajo del movimiento de la aspereza (b) espécimen y deslizador
Figura 2. 4. Diagrama esquemático de los cuatro modos básicos de frotamiento para un contacto bola sobre plano27
Figura 2. 5. Ilustración de las condiciones de deslizamiento por frotamiento 29
Figura 2. 6. Representación de la carta de frotamiento que combina el análisis del régimen de frotamiento (RCFM) con la respuesta del material (MRFM)
Figura 3. 1. Fases del desarrollo de la investigación
Figura 3. 2. Condiciones de los ensayos tribológicos (parámetros y niveles) 39
Figura 3. 3. Especímenes de prueba (probetas) para los ensayos en tribómetro (a) Deslizamiento (b) Frotamiento42
Figura 3. 5. Esquema de la máquina para ensayos de fricción y desgaste por deslizamiento
Figura 3. 6. (a) Selector de Matrices Ortogonales y (b) matriz L9 46
Figura 3. 7. Esquema para la determinación del perfil del volumen desgastado 51
Figura 3. 8. Programa de recolección de datos STBA (Gloriet, 2012)53
Figura 3. 9. Distribución de toma de datos de ancho y profundidad de la huella
Figura 4. 1. Resultados de la análisis microestructura del acero inoxidable dúplex 2507
Figura 4. 2. Resultados de COF vs Carga, Velocidad de Deslizamiento y Distancia recorrida en tribómetro bola sobre anillo

Figura 4. 3. Respuesta de COF por deslizamiento en tribómetro bola sobre anillo en función de (a) la Carga Normal, (b) la Velocidad de Deslizamiento y (c)(d Distancia recorrida
Figura 4. 4. Respuesta de Volumen de desgaste vs (a) Carga Normal, (b Velocidad de Deslizamiento y (c)(d) Distancia recorrida en tribómetro bola sobre anillo
Figura 4. 5. Respuesta del coeficiente de desgaste promedio en función de la distancia de deslizamiento en tribómetro bola sobre anillo
Figura 4. 6. Detalle huella de desgaste del SAF 2507 (a) agrietamiento y (b deformación plástica
Figura 4. 7. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 1a. Las imágenes fueror tomadas en cuatro posiciones separadas 90° una de la otra
Figura 4. 8. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 1b. Las imágenes fueror tomadas en cuatro posiciones separadas 90° una de la otra73

- Figura 4. 9. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 2a. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra......74
- Figura 4. 10. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 2b. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra......74
- Figura 4. 11. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 3a. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra......74

- Figura 4. 25. Volumen de desgaste por frotamiento para el acero dúplex SAF 2507 como función del ciclo de duración en tribómetro bola sobre plano..81
- Figura 4. 26. Volumen de desgaste por frotamiento para el acero dúplex SAF 2507 como función de la carga normal en tribómetro bola sobre plano81
- Figura 4. 28. Coeficiente de desgaste por frotamiento para el acero dúplex SAF 2507 como función del clico de duración en tribómetro bola sobre plano.. 84

- Figura 4. 37. Imágenes digitales obtenidas mediante MO, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μ m y

Lista de Tablas

Tabla 2. 1. Propiedades mecánicas de aceros inoxidables 16
Tabla 2. 2. Propiedades mecánicas mínimas ASTM A 240 para aceros inoxidables dúplex
Tabla 2. 3. Mecanismos de desgaste 23
Tabla 3. 1. Condiciones de ensayo de fricción y desgaste por deslizamiento entribómetro bola sobre anillo40
Tabla 3. 2. Condiciones de ensayo de desgaste por frotamiento en tribómetro bola sobre plano
Tabla 3. 3. Matriz Ortogonal de Ensayos para tribómetro bola sobre anillo 47
Tabla 3. 4. Matriz Ortogonal de Ensayos en tribómetro bola sobre plano 47
Tabla 4. 1. Cantidad de componentes del acero inoxidable dúplex 2507 (% en peso)
Tabla 4. 2. Caracterización para el acero inoxidable dúplex 2507 empleado en tribómetro tipo anillo sobre anillo57
Tabla 4. 3. Caracterización para el acero inoxidable dúplex 2507 empleado en tribómetro tipo bola sobre plano58
Tabla 4. 4. Resumen de resultados para COF por deslizamiento del SAF 2507 en tribómetro bola sobre anillo62
Tabla 4. 5. Análisis ANOVA para COF del SAF 2507 por deslizamiento en tribómetro bola sobre anillo64
Tabla 4. 6. Relación S/N del COF por deslizamiento para el SAF2507 en tribómetro bola sobre anillo65
Tabla 4. 7. Análisis rango S/N para COF por deslizamiento para el SAF2507 en tribómetro bola sobre anillo65

Dedicatoria

A mi padre Jorge Eustoquio Dios lo reciba en su gloria

A mi madre, María Yolanda Dios la tenga su lado

A mi esposa, Ely R

A mis hijos, Víctor M y Marco A

A mis hermanos Jorfe E, María M, Javier E,

Jairo E, Mayola M, Maithe Y

Agradecimiento

El autor desea expresar su especial agradecimiento a:

Prof(a). Dr. Sandra Cabello de la Escuela de Ingeniería Mecánica, UC, por su supervisión y consejos durante el desarrollo de la investigación.

Prof(a). Dr. Mariana Staia de la Escuela de Ingeniería Metalúrgica, UCV, por la aceptación como investigador visitante y permitir la realización de los ensayos en Laboratorio de Tribología del Centro de Ciencias e Ingeniería de Nuevos Materiales y Corrosión, UCV.

Prof. Dr. Edwin Carrasquero de la Escuela de Ingeniería Metalúrgica, UCV, por su valiosa guía y colaboración en la realización de los ensayos.

Prof. Dr. Luis Valles por la motivación en el desarrollo de la temática seleccionada y la disposición del Centro de Investigación de Materiales para la realización de los ensayos.

A los Asistentes de Investigación Centro de Ciencias e Ingeniería de Nuevos Materiales y Corrosión, UCV, por su colaboración en la disponibilidad de los equipos de ensayos.

Al personal Técnico del Laboratorio de Materiales y Asistentes de investigación del Laboratorio de Predicciones de la Escuela de Ingeniería Mecánica de la Facultad de Ingeniería, UC, por su colaboración en la preparación, análisis de muestras en microscopía y realización de los ensayos.

A mis compañeros de doctorando por su estímulo para continuar investigando.

Resumen

El presente trabajo expone la evaluación del comportamiento ante la fricción y el desgaste del acero inoxidable dúplex en condiciones de deslizamiento y frotamiento. Los ensayos fueron desarrollados en tribómetros tipo bola sobre plano y bola sobre anillo. Como material de las probetas se empleó el acero inoxidable súper dúplex SAF 2507 sin tratamiento térmico y como material de contraparte se usó el acero AISI 52100. Los ensayos se realizaron en condiciones de ambiente (aire) y de lubricación seca (sin lubricante). Los parámetros y niveles fueron seleccionados, a fin de estudiar sus efectos en el coeficiente de fricción y coeficiente desgaste en consideración de aplicaciones de médicas de implantes, placas de fijación y prótesis. Se empleó un diseño experimental de acuerdo a la metodología de Taguchi. El comportamiento demostrado de los aceros Súper Dúplex ante el desgaste y la fricción unidireccional, bajos las condiciones evaluadas en esta investigación, indica que el acero súper dúplex es un sustituto apropiado del acero austenítico para aplicaciones ortopédicas y osteosíntesis, donde se requiere durabilidad de los componentes en contacto. Se destaca las siguientes resultados: en la condición de deslizamiento, se obtuvo un coeficiente de fricción promedio en el intervalo de 0,213 a 0,891 y los valores del coeficiente de desgaste se reportan en el rango desde 0,19588 x 10^{-12} m²/N hasta 0,72381 x 10^{-12} m²/N, para las condiciones evaluadas. El mecanismo de desgaste identificado para el SAF 2507 es de adhesión y delaminación de alta velocidad. Para la condición en frotamiento, los valores del coeficiente de desgaste se reportan en el intervalo desde 0,76 x 10^{-9} m²/N hasta 1,96 x 10^{-9} m²/N. Se analizó la morfología de la huella por microscopia óptica y electrónica de barrido, identificándose que los ensayos se realizaron bajo las condiciones de un régimen mixto de frotamiento. Se halló que los desechos de desgaste se generan por mecanismos de adhesión, deformación cíclica simple y deformación cíclica repetida.

Palabras Clave: desgaste por deslizamiento, desgaste por frotamiento, coeficiente de fricción, coeficiente de desgaste, acero inoxidable dúplex, biomaterial, tribología

Abstract

The present work exposes the evaluation of the behavior again friction and wear of duplex stainless steel in sliding and fretting conditions. The tests were developed in ballon-plane and ball-on-ring tribometers. Super duplex stainless steel SAF 2507 without heat treatment was used as the material of the specimens, and AISI 52100 steel was used as the counterpart material. The tests were carried out under ambient conditions (air) and dry lubrication (without lubricant). The parameters and levels were selected in order to study their effects on the friction coefficient and wear coefficient in consideration of medical applications of implants, fixation plates and prostheses. An experimental design was used according to the Taguchi methodology. The demonstrated behavior of super duplex steels against wear and unidirectional friction, under the conditions evaluated in this research, indicates that super duplex steel is an appropriate substitute for austenitic steel for orthopedic and osteosynthesis applications, where durability of the components in contact is required. The following results are highlighted: in the sliding condition, an average friction coefficient was obtained in the range of 0.213 to 0.891 and the wear coefficient values are reported in the range from 0.19588 x 10-12 m²/N to 0.72381 x 10-12 m²/N, for the evaluated conditions. The wear mechanism identified for SAF 2507 is adhesion and high speed delamination. For the fretting condition, the wear coefficient values are reported in the range from 0.76 x 10-9 m^2/N to 1.96 x 10-9 m^2/N . The morphology of the scar was analyzed by optical and scanning electron microscopy, identifying that the tests were carried out under the conditions of a mixed rubbing regime. Wear debris was found to be generated by adhesion mechanisms, simple cyclic strain, and repeated cyclic strain.

Key Words: sliding wear, fretting wear, friction coefficient, wear coefficient, duplex stainless steel, biomaterial, tribology

Introducción

En la actualidad se están realizando muchas investigaciones acerca de los aceros inoxidables dúplex, motivado a su constante desarrollo, pero aún se desconocen algunas de sus propiedades. Un caso muy especial es en el área de la tribología, en la cual no se tiene suficiente información acerca de cómo es el comportamiento de este tipo de acero inoxidable bajo condiciones de contacto en movimiento relativo. Esto genera una limitante en el diseño de elementos de sistemas donde la durabilidad es un factor de decisión.

Se puede considerar, de manera particular, las aplicaciones biomecánicas o de bioingeniería, en la que elementos de fijación, implantes y algunas prótesis, presentan movimiento relativo entre las partes; y donde el acero inoxidable dúplex podría ser un excelente material para la construcción de los mismos, a muy bajo costo, pero desafortunadamente para el diseñador, existe poca información acerca de su respuesta de fricción y desgaste, la cual va a permitir tomar una decisión final acerca de su elección como material de fabricación en bioingeniería.

En el presente trabajo de investigación se describe un estudio al acero dúplex (austenítico – ferrítico) tipo SAF 2507 que permite conocer su respuesta tribológica bajo condiciones de contacto deslizante y de frotamiento mediante diferentes tribómetros, considerando las condiciones de las aplicaciones médicas, con la finalidad de aportar, de manera preliminar, información que conlleve a la selección del acero súper dúplex como material para aplicaciones de bioingeniería, cuando se considera el criterio de durabilidad.

Inicialmente, en el capítulo 1, se presenta el problema de investigación, la formulación, los objetivos, las limitaciones y el alcance del estudio. Luego, en el capítulo 2, se exponen los antecedentes de investigación y las consideraciones teóricas que permiten conocer el tipo de material en estudio y comprender el fenómeno de fricción y desgaste. Seguidamente, en el capítulo 3, se describe la

metodología implementada en el desarrollo la investigación. En el capítulo 4, se muestran los resultados de la caracterización para la fricción y el desgaste de acero dúplex en estudio, su discusión y análisis, respectivo. Finalmente, en el capítulo 5, se señalan las conclusiones a las cuales se arribaron en la evaluación del comportamiento ante la fricción y el desgaste por deslizamiento del acero inoxidable dúplex evaluado.

1. El Problema de Investigación

1.1. Planteamiento del problema

Los aceros dúplex austeníticos ferríticos son aceros inoxidables que han tenido un significativo crecimiento por su utilidad en distintas aplicaciones donde la corrosión es agente predominante. Esto debido a que combinan una serie de propiedades que los colocan a un nivel muy superior sobre los aceros inoxidables comúnmente utilizados. Su elevada resistencia mecánica y corrosiva lo convierte en un atractivo material para el diseñador, ya que posibilita un ahorro del mismo, y por consiguiente, una reducción de costos del proyecto de diseño de ingeniería.

En la actualidad se están realizando muchas investigaciones acerca de los aceros inoxidables dúplex, motivado a su constante desarrollo (Cigada, et al., 1989), (Gregorutti, Grau, Sives, & Elsne, 2016), (IMOA, 2012), pero aún se desconocen algunas de sus propiedades. Un caso muy especial es en el área de la tribología (Straffelini, 2002), (Szyndelman, 2008), (Mestra, Fargas, Anglada, & Mateo, 2010), (Renedo, 2010), (Davanageri, Narendranath, & Kadoli, 2018) en la cual no se tiene suficiente información acerca de cómo es el comportamiento de este tipo de acero inoxidable bajo condiciones de contacto en movimiento relativo, es decir, se desconoce su respuesta de fricción y su efecto asociado, el desgaste. Esto genera una limitante en el diseño y fabricación de elementos de un sistema donde la durabilidad (vida larga y satisfactoria) es una consideración importante.

Se puede mencionar, de manera particular, las aplicaciones biomédicas o de bioingeniería, en la que algunos elementos de fijación (placas), implantes (clavos, tornillos, alambre, agujas y pines, entre otros) y prótesis (artificiales en hombro, cadera, rodilla entre otras), se fabrican de acero inoxidable y donde el daño derivado del contacto en movimiento relativo, resulta en la destrucción de la película de protección y la liberación

continua de iones de metales pesados en los fluidos corporales, con posibles reacciones tóxicas (Waterhouse, 1992).

El acero dúplex podría ser una excelente selección como material de fabricación en bioingeniería, a muy bajo costo, pero desafortunadamente para el diseñador, existe poca información acerca de sus características tribológicas, la cuales van a permitir tomar una decisión final acerca de su elección como biomaterial.

En vista de lo anteriormente expuesto, se plantea la necesidad de realizar ensayos o pruebas al acero inoxidable dúplex para evaluar sus características tribológicas en diferentes tribómetros. En el presente trabajo de investigación se propone la evaluación del comportamiento ante el contacto deslizante del acero inoxidable dúplex tipo SAF 2507 (súper dúplex), con la finalidad obtener información sobre la fricción y desgaste que permita su selección como material en aplicaciones de bioingeniería.

1.2. Objetivos de Investigación

Objetivo General:

Estudiar el comportamiento tribológico de un acero inoxidable dúplex austenítico ferrítico bajo condición de contacto por deslizamiento para aplicaciones en bioingeniería.

Objetivos Específicos

- 1. Caracterizar la composición química y la microestructura del material en estudio mediante procedimiento estándar.
- 2. Determinar las propiedades de la superficie del material en estudio mediante los equipos normalizados.

- Evaluar el coeficiente de fricción por deslizamiento del material en estudio para los parámetros y niveles estimados en aplicaciones biomédicas mediante el tribómetro seleccionado.
- Evaluar el coeficiente de desgaste por deslizamiento del material en estudio para los parámetros y niveles estimados en aplicaciones biomédicas mediante el tribómetro seleccionado.
- 5. Evaluar la morfología de la huella en condiciones deslizantes del material en estudio mediante microscopia.

1.3. Justificación de la Investigación

La tribología es una ciencia que tiene como gran potencial brindar el beneficio de economizar recursos financieros, materias primas y materiales energéticos. De aquí su enorme importancia en la industria, estimulando las investigaciones en la fricción, la lubricación y el desgaste.

En las últimas décadas, la tribología se ha convertido en una de las ciencias de más rápido desarrollo, eso lo confirma el incremento del número de cátedras universitarias creadas en tribología y las recomendaciones y medidas aplicadas por varios gobiernos de países desarrollados donde son considerados sus fundamentos.

La siguiente investigación permite retomar el camino en el campo de la Tribología en el Centro de Investigación de Materiales de la Universidad de Carabobo, como línea de investigación, obteniendo un antecedente importante en el análisis tribológico de materiales novedosos, siendo un caso particular el Acero Inoxidable Dúplex, poco estudiado en esta área.

La misión a cumplir es generar documentación necesaria para dar a conocer las principales propiedades tribológicas del material en estudio siendo esta una información valiosa que puede ayudar a investigaciones futuras que tengan como fin comprender los

5

fenómenos de la fricción y el desgaste. Además, el principal beneficiado será el investigador el cual podrá indagar y proseguir los posteriores ensayos y análisis, referente a este u otros materiales.

1.4. Limitaciones y Delimitaciones

Limitaciones:

- Disponibilidad de material para realización de los ensayos.
- Disponibilidad de equipos para realizar los ensayos y evaluación analítica.

Delimitaciones:

- El material evaluado fue un acero inoxidable dúplex (austenítico ferrítico) tipo SAF 2507 (25Cr-7Ni-4Mo-N) sin tratamiento térmico, en presentación de cilindros (anillos) y discos planos, usando como contraparte de contacto, bolas de acero al cromo AISI 52100 (100Cr6) de cojinetes estándares comerciales.
- Se evaluó probetas o especímenes de configuración geométrica no concordante (esfera-plano y esfera-cilindro) en condiciones de contacto para el caso de deslizamiento lineal unidireccional y reciprocante.
- El análisis químico se realizó mediante el método análisis por espectroscopia de dispersión de energía de rayos X (EDX), a fin de verificar la composición del material en estudio.
- El análisis de la microestructura se ejecutó mediante microscopia óptica y electrónica de barrido acuerdo a las normas ASTM E3 y ASTM E340 y sólo incluye la verificación de las fases presentes (austenita y ferrita) y la distribución de fase del material en estudio.
- Las propiedades de superficie que determinaron fueron la microdureza o dureza según ASTM E384 y ASTM E18 y la rugosidad superficial de acuerdo a JIS B 0601-2001.

- Los parámetros o factores mínimos considerados son la carga normal, velocidad de deslizamiento y distancia de desplazamiento en no menos de dos niveles por factor estimado de aplicaciones de remplazos totales de articulaciones (prótesis) y placas de fijación en extremidades inferiores.
- No se empleó un lubricante.
- Los tratamientos para cada experimento se efectuaron con un mínimo en dos réplicas.
- Se seleccionó un diseñó experimental que optimiza el uso del material disponible.
- Se determinó el coeficiente de fricción dinámico, el coeficiente de desgaste y la morfología de la huella (mecanismos y régimen), sin lubricante, bajo las condiciones de temperatura, humedad y presión normal de un laboratorio.
- Los ensayos tribológicos se realizarán en tribómetros tipo bola sobre anillo y bola sobre disco o plano en concordancia con las normas ASTM 77-98 y ASTM 133-02 y la morfología de la huella se analizó mediante microscopia óptica y electrónica de barrido.
- La investigación se llevó a cabo en los espacios y equipamiento de los Laboratorios de Materiales y de Predicciones de la Escuela de Mecánica de la Facultad de Ingeniería de la Universidad de Carabobo y Laboratorio de Tribología del Centro de Ciencias e Ingeniería de Nuevos Materiales y Corrosión, CEMANCOR, de la Universidad Central de Venezuela.
- Se contó con la disponibilidad de recursos del Centro de Investigación de Materiales de la Facultad de Ingeniería de la Universidad de Carabobo.

En la sección siguiente se presenta en resumen los fundamentos teóricos considerados y la revisión bibliográfica realizada como base del marco teórico del tema de investigación

2. Marco Teórico

En esta se sección se presenta estudios previos disponibles directamente relacionados con el objeto de estudio y un resumen de aspectos teóricos sobre el área de la investigación a desarrollar.

2.1. Antecedentes de la investigación

A continuación se resumen las investigaciones realizadas que permitieron conocer el estado del conocimiento sobre el comportamiento del acero dúplex y que lo promueven como biomaterial.

Cigada y otros investigadores (1989), (1990), (1993) muestran los resultados de una investigación extensa realizada por un grupo de trabajo constituido por nueve laboratorios, con el objetivo de estudiar una material alternativo a la tradicional ASTM F 138, acero inoxidable austenítico. Todos los resultados in vitro, en vivo en animales y clínicos obtenidos han demostrado que el acero 25Cr-7Ni-4Mo-0.28N acero dúplex austenítico - ferrítico puede ser sugerido como un sustituto conveniente de la ASTM F138, ya que no es susceptible a la corrosión de grietas en el cuerpo humano y tiene mejores propiedades mecánicas (en particular mejor resistencia a la fatiga) que la tradicional.

Gregorutti et. al. (2016), analizaron las propiedades mecánicas, electroquímicas y magnéticos del acero inoxidable dúplex para evaluar su uso como biomaterial, comparando los resultados con los obtenidos para el acero inoxidable austenítico. Reportaron que ambos aceros se comportan como materiales magnéticos ligeros, sin embargo, el acero inoxidable dúplex muestra mayor saturación magnética y remanencia, mientras que el acero inoxidable austenítico.

Seguidamente, se resumen algunas de las investigaciones realizadas para caracterizar tribológicamente a los aceros inoxidables dúplex y fueron considerados para diseño experimental, además de ser utilizados para comparar algunos de los resultados logrados.

Straffelini et. al. (2002), investigaron sobre el desgaste por deslizamiento de aceros inoxidables austenítico-ferríticos y austeníticos. Estos investigadores estudiaron el desgaste en seco de un acero inoxidable austenítico 304L y un acero inoxidable dúplex austenítico-ferrítico 2205. La evolución del desgaste se caracterizó por la existencia de una transición de deslizamiento-distancia. En particular, el desgaste pasó de delaminación a tribo-oxidación, con una reducción en la tasa de desgaste. La ocurrencia de esta transición fue interpretada con referencia a una teoría del desgaste por deslizamiento basado en la formación, por la deformación plástica subsuperficial, de una capa tribológicas y su desprendimiento durante el desplazamiento. Se ha encontrado que la transición está controlada por la capacidad del sistema tribológico para formar, en su parte exterior, una escala rica en óxido protector. Esto introduce una limitación cinética, que es particularmente importante en el caso de los dúplex 2205, debido a su ductilidad menor en comparación con el acero 304 L. En este marco, la influencia de la velocidad de desplazamiento, el comportamiento friccional particular, el papel de cromo en el desgaste oxidativo y la evolución de la temperatura de la superficie durante el desplazamiento podría ser explicado.

En el proyecto investigación de Szyndelman (2008), se estudia el comportamiento tribológico del acero inoxidable dúplex 2205. Para ello, se ha realizado su caracterización metalográfica y se han evaluado las características necesarias para complementar dicho estudio como la dureza, la densidad y la rugosidad superficial. A continuación, se han llevado a cabo los ensayos de tribología mediante la técnica de "pin-on-disk". Las velocidades de deslizamiento seleccionadas fueron: 0,2 m/s, 0,7 m/s y 1,2 m/s. Para cada una de estas velocidades, se evaluaron las distancias de: 500 m, 1000 m, 2000 m, 3000 m, 4000 m y 5000 m. A partir de estos ensayos, se ha determinado la cinética del desgaste, y los tipos y mecanismos de desgaste en deslizamiento del acero inoxidable 2205. Los resultados obtenidos muestran que la cinética de desgaste depende de la velocidad de

deslizamiento. Los tipos y mecanismos de desgaste dominantes evolucionan en función de la velocidad de deslizamiento y la distancia recorrida, existiendo una zona de transición en la que disminuye la cinética de desgaste.

Mestra et. al. (2010), estudiaron los mecanismos de desgaste de deslizamiento de un tipo de acero inoxidable dúplex 2205. Para hacerlo, tres diferentes velocidades de desplazamiento (0,2, 0,7 y 1,2 m/s) y seis distancias de deslizamientos (500, 1000, 2000, 3000, 4000 y 5000 m) fueron seleccionados. Sus resultados muestran que la tasa de desgaste depende tanto de la velocidad como de la distancia de deslizamiento. Los mecanismos de desgaste detectados fueron surcados, microagrietamiento y microcorte (mecanismos típicos de desgaste por fatiga). Estos mecanismos evolucionan según la velocidad y distancia de deslizamiento, destacando una zona de transición en que la tasa desgaste se reduce.

En el proyecto de investigación de Renedo (2010), se estudia el comportamiento al desgaste por deslizamiento de cuatro aceros representativos de las cuatro grandes familias de aceros inoxidables: ferrítico (AISI 446), austenítico (AISI 316), dúplex (AISI 2205) y martensítico (AISI 420). Para cada uno de ellos se han realizado: caracterización metalográfica, determinación de dureza, densidad y rugosidad, y ensayos de tribología mediante la técnica de bola sobre disco. Se han seleccionado una velocidad de 0,024 m/s y unas distancias de 100, 250 y 500 m. A partir de estos ensayos, se ha determinado la cinética de desgaste para cada uno de los aceros y sus mecanismos de desgaste. Los resultados han mostrado que el acero martensítico presenta la mayor resistencia al desgaste debido a su mayor dureza y a su alto contenido en Carbono (0.38 %). El siguiente acero con mejor respuesta al desgaste ha sido el acero ferrítico, con un contenido en Carbono (0.18 %), superior al dúplex y al austenítico. El ferrítico presenta una huella de desgaste con la mayor aglomeración de partículas. Con una menor resistencia al desgaste se encuentra el acero dúplex. Finalmente, el que experimentó mayor desgaste fue el acero inoxidable austenítico. Los mecanismos de desgaste observados son los de "ploughing" o apilamiento por fatiga, por oxidación y por microcorte (mecanismo predominante para los 11

cuatro aceros estudiados). Se ha observado una reducción en la tasa de desgaste para los aceros ferrítico, austenítico y dúplex. Estas reducciones se deben a la aglomeración de partículas sobre la huella.

En la investigación de Medina y Peralta (2010) se estudió el comportamiento tribológico del acero inoxidable dúplex SAF 2507. Los ensayos fueron realizados en un tribómetro que requirió su recuperación y modificación, disponible en el Laboratorio de Predicciones de la Escuela de Ingeniería Mecánica de la Universidad de Carabobo. El ensayo de tribología consistió en un arreglo *"esfera sobre anillo"*, el cual es una modificación del procedimiento ASTM G-77. Este ensayo consiste en deslizar una esfera sobre un anillo a una cierta velocidad de deslizamiento durante un tiempo determinado. La velocidad de deslizamiento fue constante. Para una velocidad fija de 3,14 m/s, se han evaluado las cargas de: 17,1 N, 12,2 N y 7,3 N y las distancias de: 500 m, 2000 y 5000 m. Esto representa un número de nueve experiencias, de las cuales cinco fueron repetidos para verificar los valores obtenidos. A partir de estos ensayos, se ha logrado determinar el coeficiente de fricción y de desgaste. Los resultados obtenidos reflejan los valores esperados para este tipo de materiales, lo cual es comparable con los antecedentes tribológicos.

Davanageri et. al. (2018) presentan la simulación del comportamiento de desgaste por elementos finitos del acero inoxidable súper dúplex AISI 2507 tratado térmicamente a 850 ° C con diferentes tiempos de envejecimiento (30, 60, 90 minutos), seguido de enfriamiento con agua. El tratamiento térmico se llevó a cabo para favorecer la precipitación de la fase sigma secundaria intermetálica (σ). El estudio del desgaste por deslizamiento en seco se llevó a cabo con el equipo pin-on-disc. Se utilizó el modelo de desgaste de Archard y el software de elementos finitos ANSYS para determinar la pérdida de volumen de desgaste. Los investigadores concluyen que el índice de desgaste específico o el coeficiente de desgaste dimensional es el factor más significativo en el cálculo del volumen de desgaste y varía con el material y los parámetros operativos. Adicionalmente, señalan que los resultados revelan que existe una buena concordancia entre los valores simulados (FE) y los valores experimentales.

12

Wang et. al. (2019) realizaron una investigación que tuvo como objetivo estudiar la influencia de la carga y el medio ambiental en el comportamiento de frotamiento de acero inoxidable súper dúplex (SDSS). Se estudió el efecto de la carga sobre el comportamiento de frotamiento de SDSS SAF 2507 en el aire y el agua de mar. Las pruebas de desgaste por frotamiento bajo diferentes cargas se realizaron con una configuración de contacto de bola sobre plano. Se determinó el coeficiente de fricción, el volumen de desgaste, la morfología de la superficie y el componente de oxidación. Entre su hallazgos, esta que al aumentar la carga aplicada, el coeficiente de fricción disminuye tanto en el aire como en el agua de mar. El mecanismo de frotamiento se transforma gradualmente de un régimen de deslizamiento parcial a un régimen de deslizamiento en el aire, mientras que las contrapartes de frotamiento se encuentran en el estado de deslizamiento bruto en el agua de mar. En el agua de mar, el coeficiente de fricción es menor mientras que la pérdida por desgaste es mayor en comparación con el aire. Los resultados reportados en esta investigación podrían ayudar a elegir la carga adecuada en diferentes entornos, ya que revela el comportamiento ante el frotamiento de SDSS SAF 2507 bajo diferentes cargas en el aire y el agua de mar, lo que serviría al realizar evaluaciones controladas por la combinación de carga aplicada y ambiente de lubricación.

Wang et. al, (2019) en este trabajo, se investigó el comportamiento de desgaste por frotamiento de SDSS SAF 2507 bajo diferentes cargas y temperaturas. En esta investigación, se ha estudiado el comportamiento ante el frotamiento del SDSS en un amplio rango de temperatura de 25 ° C a 800 ° C a 20 N y 50 N. Se encontró que el comportamiento de desgaste por frotamiento del SDSS está influenciado tanto por la temperatura como por la carga. La temperatura elevada induce tanto el ablandamiento de la superficie como la formación de una capa de óxido. En comparación con 20 N, la capa de óxido con una carga superior de 50 N es más fácil de transferir a la superficie de la contraparte bajo los efectos interrelacionados de la temperatura de calentamiento y la carga aplicada, lo que finalmente conduce a una mayor pérdida por desgaste. A temperatura ambiente, se produce el fenómeno anormal de menor desgaste a alta carga.

13

Cabe señalar, en opinión del autor, que poco se ha investigado sobre el comportamiento tribológico en aceros inoxidables dúplex y en particular sobre el SAF2507 en condición de deslizamiento en aplicaciones de bioingeniería, lo cual demuestra la relevancia que tiene la presente investigación para la comunidad de investigadores.

2.2. Bases teóricas

En esta sección se desarrolla los contenidos teóricos que conforman el punto de vista adoptado para fundamentar el problema planteado.

2.2.1. Aceros inoxidables en tribología

Los aceros inoxidables son usados en aplicaciones donde es esencial la resistencia al calor y corrosión. Hay tres tipos básicos de aceros inoxidables usados en el control de desgaste: Aceros inoxidables austeníticos, martensíticos y de endurecimiento por precipitación (Glaeser, 1992), (De Farias, Boschetti, Wolynec, & Padilha, 2017).

Acero Inoxidable Austenítico: De uso extendido gracias a su superior resistencia a la corrosión. Resiste varios agentes químicos, agua de mar, metales líquidos y el agua de reactor de 316 °C. Estos son aceros de la serie 300 y contienen alrededor de 18% de cromo, 8% de níquel y 0,1 % de carbón. Son conocidos por su tendencia a la adhesión y al rayado. A pesar que, éstos desarrollan una rápida película de óxido pasivado, cuando se exponen al aire, su baja tasa de endurecimiento de trabajo en frio causa ruptura al contacto del óxido y el material virgen. Estos aceros inoxidables no pueden ser endurecidos por tratamiento térmico, y por lo tanto, no hay medios simples de mejorar su resistencia al desgaste.

Acero Inoxidable Martensítico: Este contiene más de 11,5% de cromo y bajo contenido de níquel, denominado serie 400. Puede ser endurecido por tratamiento térmico, lo que lo hace más resistente al rayado que los de la serie 300, sin embargo, no son tan resistentes a la corrosión como este último.
Acero Inoxidable de Endurecimiento por Precipitación (PH, por "Precipitation Hardened"): Es usado en ambientes de altas temperaturas y medios corrosivos que requieren resistencia al degaste. Poseen alta dureza y resistencia a la tracción, los que lo hace superiores a los de la serie 400 (Glaeser, 1992).

En la tabla 2.1 se encuentran las propiedades mecánicas de algunos aceros inoxidables seleccionados.

Se ha desarrollado una nueva familia de aceros inoxidables bifásicos (dúplex) de amplio crecimiento en aplicaciones de ingeniería, los aspectos principales se resumen en la sección siguiente.

2.2.2. El Acero Inoxidable Dúplex como biomaterial

Los aceros inoxidables dúplex son aleaciones de cromo-níquel-molibdeno que son balanceados en el contenido de una mezcla de austenita y ferrita, y también son magnéticos. Su estructura dúplex resulta en una resistencia mejorada contra la corrosión, en comparación con los aceros austeníticos y mejorada tenacidad y ductilidad, en comparación con los aceros inoxidables ferríticos. La resistencia de tracción va desde 550 hasta 690 MPa en la condición de recocido, que es aproximadamente dos veces el nivel de resistencia de cada fase por separado (Magee, 1992).

Los grados dúplex se dividen en cinco grupos basados en su contenido de aleación y a su resistencia a la corrosión (IMOA, 2012) :

- Dúplex de baja aleación (no enriquecido), se refiere a los grados como el 2304 que no contienen Molibdeno.
- Dúplex estándar, de 22% de cromo con un número equivalente de resistencia de picaduras de corrosión (PREN) menor a 40, donde PREN = %Cr + 3,3 (%Mo + 0.5%W) + 16%N. Siendo el 2205, el más ampliamente utilizado (más del 80% del uso de acero dúplex)
- Dúplex 25% de cromo, como la aleación 255 con PREN inferior a 40.

15

- Súper Dúplex es por definición un acero inoxidable dúplex con PREN 40 -45. Normalmente, los grados Súper Dúplex tienen 25 – 26% cromo, como el 2507.
- Híper Dúplex se refiere a los grados dúplex con un PREN mayor a 45 como el 2707.

En la tabla 2.2 se muestran propiedades mecánicas limites ASTM A 240 de aceros dúplex seleccionados.

			-	-	
Material	Condición	Tratamiento Térmico	Dureza [HV]	Resistencia a la Tracción [MPa]	Modulo Elástico [GPa]
15-5 PH	Forjado	H900	420	1379	196
17-4 PH	Forjado	H900	320	1379	196
410		HT, 1000F te	257	758	196
410		Recocido	135	517	196
440C		Recocido	257	862	200
440C		HT, 600F te	650	1379	200
304		Recocido	150		197
316		Recocido	159	586	196
316		Laminado en frio	200	558	196
347	Trabajado en caliente	Recocido	150	620	193

Tabla 2. 1.Propiedades mecánicas de aceros inoxidables (Glaeser, 1992)

 Tabla 2. 2.

 Propiedades mecánicas mínimas ASTM A 240 para aceros inoxidables dúplex (IMOA, 2012)

Тіро	UNS	Resistencia a la Tracción [MPa]	Resistencia a la Fluencia 0,2% [MPa]	Alargamiento en 2 pulg %
2304	S32304	600	400	25
2205	S32205	655	450	25
2507	S32750	795	550	15

Los biomateriales metálicos deben cumplir estrictamente con una serie de requisitos, como por ejemplo: inercia química, compatibilidad biológica, cantidad admisible de impurezas, entre otros (ISO, 1997).

Los aceros inoxidables austeníticos ASTM F138/139, variaciones del acero AISI 316L, caracterizada por un menor contenido de inclusiones no-metálicos, son ampliamente utilizados en la fabricación componentes para soporte de carga en prótesis de rodilla y cadera, en las placas y clavos para tibia (ASTM, 2003), (ASTM, 2000), (Kunčická, Kocich, & Lowe, 2017). En muchos casos estos aceros no han demostrado resistencia a la corrosión satisfactoria (Cigada, et al., 1989), (Gregorutti, Grau, Sives, & Elsne, 2016).

Los aceros inoxidables dúplex son atractivos como materiales para ser implantados como elementos de fijación ortopédica, placas de huesos, entre otros, en seres vivos, gracias a su alta resistencia a la corrosión y bajos costo, en comparación con el acero inoxidable 316L y aleaciones de titanio, preferidos en esta aplicación (Cigada, et al., 1989). La biocompatibilidad, que ha sido uno de los mayores inconvenientes a solventar de los biomateriales, para el caso del acero dúplex, es de buena aceptación como se concluye en estudio experimental realizada en trabajo de investigación de Gómez (Gómez, 2009) y por Beloti et. al. (2004).

2.2.3. Principios básicos de Fricción y Desgaste

La tribología es la ciencia y la tecnología de las superficies que interactúan en movimiento relativo y de las prácticas relacionadas con las mismas. La tribología abarca la ciencia y la tecnología de la fricción, el desgaste y la lubricación. Se ocupa de los fenómenos que se producen entre las superficies que interactúan en movimiento relativo en relación con la física, la mecánica, la metalurgia y la química. El término "tribología" fue acuñado en el Informe Jost publicado en Londres en 1966 (Kadjas, Harvey, & Wilusz, 1990).

La fricción se considera como la fuerza de resistencia tangencial en la frontera común entre dos cuerpos cuando, bajo la acción de una fuerza externa, un cuerpo se mueve o

17

tiende a desplazarse con respecto a la superficie de la otra (Kadjas, Harvey, & Wilusz, 1990). En la figura 2.1 se indican las dos principales clases de fricción, por deslizamiento y por rodamiento. La fricción por rodamiento implica a las superficies no concordantes, mientras que las superficies correspondientes al deslizamiento son concordantes. En los contactos rodantes y en los deslizantes se necesita una fuerza tangencial, *F*, en la dirección del movimiento, para mover al cuerpo superior sobre el inferior estacionario. La razón entre la fuerza tangencial y la carga normal aplicada, *W*, se conoce come el **coeficiente de fricción** y es, $\mu = F/W$ (Hamrock, Jacobson, & Schmid, 2000).

Figura 2. 1. Fuerza de Fricción en (a) rodamiento, (b) deslizamiento (Hamrock, Jacobson, & Schmid, 2000)

Las tres leyes de la fricción seca se enuncian simplemente como sigue (Hamrock, Jacobson, & Schmid, 2000):

- 1. La fuerza de fricción es proporcional a la carga normal.
- La fuerza de fricción no depende del área aparente de los sólidos en contacto; es decir, es independiente del tamaño de los cuerpos de los sólidos.
- 3. La fuerza de fricción es independiente de la velocidad de deslizamiento.

Estas leyes son aplicables a la mayoría de las condiciones de deslizamiento en ausencia de lubricante. Normalmente a las dos primeras se les conoce como leyes de Amonton. En la actualidad las dos primeras leyes se satisfacen para los metales, pero se violan cuando los materiales sólidos están en contacto con polímeros. La tercera ley de la fricción (atribuida a Coulomb) está menos bien fundada que las dos primeras. Usualmente la fuerza de fricción que se necesita para iniciar el deslizamiento es mayor que la necesaria para mantenerlo. Así, el coeficiente de fricción estático μ_k , (al iniciar el deslizamiento) es mayor que el coeficiente de fricción dinámica μ_d . Sin embargo, una vez que se establece el deslizamiento, con frecuencia μ_d es casi independiente de la velocidad de deslizamiento (Hamrock, Jacobson, & Schmid, 2000).

Hay mucha variación en el coeficiente de fricción con los niveles de ambientes contaminados y otros factores, de manera que el ingeniero debería desarrollar datos de prueba para los materiales reales en condiciones reales de servicio. Es una prueba fácil de realizar (Norton, 2011).

El desgaste se puede considerar como la pérdida continua indeseable de material de una o ambas de las superficies del apareamiento de elementos tribológicos debido al movimiento relativo de las superficies. El desgaste es determinado por las variables de funcionamiento, los tipos de materiales y la superficie involucrada, así como los factores ambientales. El desgaste puede ir acompañado de transferencia de material de una superficie a la otra. Los mecanismos de desgaste más comunes incluyen la adhesión, abrasión, fatiga superficial, la corrosión (por frotamiento) y la erosión (Kadjas, Harvey, & Wilusz, 1990).

El desgaste por adhesión, en el que el material se transfiere de una superficie a otra por medio de una soldadura por presión, es tipo más común y el menos previsible (Hamrock, Jacobson, & Schmid, 2000). En general, el desgaste es inversamente proporcional a la dureza. La razón de desgaste se determina, por ejemplo, haciendo correr un pin sobre un disco giratorio, con carga y condiciones de lubricación controladas, en una distancia de

19

deslizamiento conocida y midiendo la pérdida de volumen. El volumen de desgaste es independiente de la velocidad de deslizamiento y se expresa por la ecuación 2.1, de nominada ecuación de (Archard, 1953), como:

$$V = K_a \frac{WS}{3H}$$
(Ec. 2.1)

Donde V, volumen de desgaste; W, carga normal; S, distancia del deslizamiento; y H. es la dureza de penetración del más blando de los dos materiales. El factor K_a es el **coeficiente de desgaste** y es una propiedad adimensional del sistema deslizante. K_a es una función de los materiales usados y también de la condición de operación y de lubricación (Norton, 2011).

Cualquier aparato diseñado para medir las fuerzas normales y tangenciales de las superficies en movimiento relativo es denominado como tribómetro. Los tribómetros también se utilizan para investigar los procesos de desgaste. Se les conoce como dispositivos de fricción y desgaste o máquinas de desgaste. Normalmente, los tribómetros son más avanzados y sofisticados que los bancos de pruebas estándar típicos.

Las configuraciones más comunes de las máquinas de contacto inicial en un punto son: pin sobre disco, pin sobre plano, pin sobre cilindro, cilindros cruzados, cuatro bolas, dos bolas y una bola. Las configuraciones de máquinas de contacto lineal incluyen: zapatas en V sobre un eje (Falex), discos o anillos deslizantes / rodantes, planos sobre cilindro y bujes seccionados sobre el eje. Las máquinas de área de contacto emplean contacto anular o circular, configuraciones de plano sobre plano e inclinadas (Kadjas, Harvey, & Wilusz, 1990).

En la figura 2.3 se aprecia configuraciones básicas de distintos tipos de tribómetros indicados en el párrafo anterior.

Figura 2. 2. Configuraciones básicas de tipos de tribómetros

2.2.4. Fundamentos del Desgaste por Deslizamiento

El desgaste ocurre por muchos mecanismos diferentes, dependiendo del material, el ambiente, las condiciones de operación y la geometría de los cuerpos desgastados. Estos mecanismos pueden ser clasificados en dos grandes grupos, como se muestra en la tabla 2.3, aquellos dominados principalmente por el comportamiento mecánico de los sólidos y aquellos dominados primordialmente por el comportamiento químico del material (Suh, 1986). En muchas situaciones de desgaste, hay muchos mecanismos que operan simultáneamente, pero generalmente hay un solo mecanismo primario que determina la tasa del mecanismo que debe identificarse para enfrentar el problema. Lo que determina el comportamiento de desgaste dominante son las propiedades mecánicas, la estabilidad química de los materiales, temperatura y condiciones de operación (Suh, 1986).

En los procesos controlados por comportamiento mecánico de los materiales, la teoría del desgaste por deslizamiento más citada es la basada en el modelo de desgaste adhesivo (Archard, 1953). La teoría de desgaste adhesivo de Archard ha sido ampliamente aceptada, ya que la relación fenomenológica entre el volumen de desgaste, la velocidad de 21

deslizamiento, la carga normal y la dureza es consistente con los resultados observados experimentalmente. Sin embargo, la teoría es débil en cuanto a que (Suh N., 1973):

- (a) Omite completamente la física y metalurgia física de la deformación del metal.
- (b) Muchas de las suposiciones empleadas en la derivación matemática son irrazonables y arbitrarias.
- (c) La teoría no proporciona ninguna información sobre el desgaste de los metales en diferentes condiciones de deslizamiento.

La teoría de la delaminación del desgaste se introdujo en 1973 para explicar el desgaste de los metales y otros materiales sólidos basado en la física de la deformación del material y para superar los inconvenientes de la teoría de la adhesión (Suh N., 1973).

La teoría de desgaste de la delaminación describe los siguientes sucesos secuenciales (o independientes si hay grietas subsuperficiales preexistentes) que conducen a la formación de la laminillas de desgaste (Suh N. P., 1986):

- 1. Cuando dos superficies entran en contacto, las cargas normales y tangenciales se transmiten a través de los puntos de contacto. Las asperezas de la superficie más suave se deforman fácilmente y se fracturan por la acción de carga repetida, formando pequeñas partículas de desgaste. También se eliminan las asperezas difíciles, pero a velocidades más lentas. Se genera inicialmente una superficie relativamente lisa, ya sea cuando estas asperezas se deforman o cuando se eliminan.
- 2. La tracción superficial ejercida por las asperezas más duras en los puntos de contacto induce una deformación plástica incremental por ciclo o carga; acumulándose con la repetición de la carga. El incremento de la deformación permanente que queda después de una carga cíclica dada es pequeño en comparación con la deformación plástica total que se produce en ese ciclo debido a la inversión de la deformación por cizallamiento.

Tabla 2. 3. *Mecanismos de desgaste (Suh, 1986)*

Tipo de desgaste	Característica típicas y definiciones	Observado en:
Pro	cesos de desgaste dominado por comportam	iento mecánico
Deslizamiento	Desgaste por delaminación. Deformación	Guías (deslizante), cojinetes,
	plástica, nucleación y propagación de	engranajes y levas, donde las
	grietas en la superficie	superficies están sometidas a
		movimiento relativo
Frotamiento	Las primeras etapas del desgaste por	Partes sujetas a presión con
	frotamiento son similares al desgaste por	pequeño movimiento deslizante
	deslizamiento pero depende de la	relativo
	amplitud relativa. Las partículas de	
	desgaste atrapadas pueden tener un	
	efecto significativo en el desgaste. La	
	amplitud del desplazamiento relativo es	
	importante	
Erosión	Debido al impacto de partículas sólidas.	Turbinas, tuberías de lodos de
	Amplia deformación de la superficie,	carbón y hélices de helicópteros
	nucleación y propagación de grietas.	
	Algunas veces la superficie es cortada por	
	las partículas sólidas cuando el ángulo de	
	impacto es superficial	
Fatiga	Se lleva a cabo propagación de grietas,	Cojinetes de bolas, rodamientos,
	normalmente perpendicular a la	sólidos deslizantes frágiles
	superficie, sin deformación plástica bajo	
	condiciones cíclicas de carga	
Proceso	os de desgaste dominado por comportamient	o químico y térmico
Solución	Formación de nuevos componentes a una	Herramientas de carburo en corte
	baja energía de formación; alta	del acero a alta velocidad
	temperatura; sin deformación plástica;	
	proceso de desgaste a nivel atómico	
Difusión	Elementos de difusión a través de la	Herramientas de acero rápido en
	interfase	corte del acero a altas
		velocidades
Oxidación	Formación de una capa oxidativa débil y	Superficies deslizantes en
	mecánicamente incompatible	ambiente altamente oxidativo
		(no es común)
Corrosión	Corrosión en el borde de grano y	Atmosfera lubricada y corrosiva
	formación picaduras	

3. A medida que la deformación subsuperficial continúa, las grietas se nuclean debajo de la superficie. La nucleación de grietas muy cerca de la superficie no puede ocurrir debido al estado triaxial de carga de compresión que existe justo debajo de la región de contacto.

4. Una vez que están presentes las grietas subsuperficiales (ya sea por nucleación de grietas o por huecos y grietas preexistentes), la carga y la deformación adicionales hacen que las grietas se extiendan y se propaguen, eventualmente uniéndose a las grietas vecinas. Las grietas tienden a propagarse paralelamente a la superficie a una profundidad gobernada por las propiedades del material y el estado de carga. Cuando las grietas no pueden propagarse debido a la pequeña concentración de tensión en la punta de la grieta debido a una tracción superficial extremadamente pequeña en el contacto de aspereza, la nucleación de la grieta es el mecanismo de control de la velocidad.

5. Cuando las grietas finalmente cortan la superficie, las laminillas de desgaste largas y delgadas se delaminan. El grosor de la lámina de desgaste se controla mediante la ubicación del crecimiento de grietas debajo de la superficie, que se controla mediante las cargas normales y tangenciales en la superficie.

Una serie de estudios experimentales han soportado esta teoría, mostrando que el proceso de delaminación se inicia cuando la deformación plástica del subsuperficial provoca la nucleación de los vacíos. Con una mayor deformación, estos huecos se alargan y se unen para formar grietas largas en una dirección casi paralela a la superficie de desgaste. En una longitud crítica, estas grietas se cortan en la superficie, produciendo una partícula de desgaste en forma de una lámina larga y delgada (Suh N. P., 1986).

Modelo de Desgaste por delaminación

Una ecuación de desgaste basada en la teoría de la delaminación ha sido desarrollada (Suh & Sin, 1983). En la figura 2.3 se muestra los modelos de la grieta subsuperficial y del contacto del espécimen y el deslizador junto a la nomenclatura utilizada por Suh y Sin (1983) en el desarrollo de la ecuación 2.2 y 2.3, para la tasa de volumen de desgaste V y el coeficiente de fricción K, respectivamente.

$$\frac{V}{S} = \frac{\Delta L^2 d(\Delta \overline{C_L} + \Delta \overline{C_R})}{\lambda l_c}$$
(Ec. 2.2)

$$K = \frac{3H\Delta L^2 d(\Delta \overline{C_L} + \Delta \overline{C_R})}{W\lambda l_c}$$
(Ec. 2.3)

Donde $\Delta \overline{C_L}$ y $\Delta \overline{C_R}$, son las tasas de propagación promedio durante *N* ciclos; *W*, la carga normal; *S*, la distancia del deslizamiento; y *H*, es la dureza de penetración del más blando de los dos materiales.

Las ecuaciones 2.2 y 2.3 muestran que la tasa de desgaste es directamente proporcional a la profundidad de la grieta y al crecimiento promedio de la grieta. Para poder usar estas ecuaciones al predecir la tasa de desgaste o el coeficiente de desgaste de los materiales, se deben determinar las tasas de propagación de grietas.

Figura 2. 3. Modelo de (a) la grieta subsuperficial debajo del movimiento de la aspereza (b) espécimen y deslizador (Suh & Sin, 1983)

2.2.5. Fundamentos del Desgaste por Frotamiento

El frotamiento ("fretting", vocablo del idioma inglés) es un fenómeno complejo, que involucra muchos aspectos tales como la tribología, el contacto mecánico y la ciencia de los materiales.

Las expresiones utilizados para describir el "fretting" pueden ser bastante confusas como desgaste por frotamiento (FW, por "fretting wear"), fatiga por frotamiento (FF, por "fretting fatigue") y corrosión por frotamiento (FC, por "fretting corrosion"). Generalmente, estos términos son derivados de las condiciones específicas de carga o basados en la observación de los daños (Kapsa, Fouvry, & Vincent, 2005).

Se entiende por frotamiento, según el Glosario de términos ASM (ASM, 1992):

"Comprende los fenómenos de desgaste que se producen entre dos superficies con movimiento relativo oscilatorio de amplitud pequeña. Téngase en cuenta que "fretting" es un término frecuentemente usado para incluir la corrosión por frotamiento y otras formas de desgaste. Este uso no se recomienda debido a la ambigüedad que pueda surgir.

Es causado por un movimiento oscilatorio de amplitud pequeña, generalmente tangencial, entre dos superficies sólidas en contacto. Téngase en cuenta que aquí el término "fretting" refiere sólo a la naturaleza del movimiento sin hacer referencia al desgaste, corrosión u otros daños que puedan resultar."

Al considerar un contacto de bola sobre plano, pueden distinguirse distintos modos de desgaste en función del tipo de movimiento relativo (figura 2.4). Todos estos casos pueden encontrarse en situaciones prácticas, pero es más frecuente la aparición de frotamiento tangencial (Kapsa, Fouvry, & Vincent, 2005).

Figura 2. 4. Diagrama esquemático de los cuatro modos básicos de frotamiento para un contacto bola sobre plano (Kapsa, Fouvry, & Vincent, 2005)

Daño por frotamiento

Mientras la palabra frotamiento describe bastante bien la oscilación en el contacto, la razón para el desplazamiento no es bien identificada, generalmente. Este inconveniente nos hace pensar en términos de las causas, bien definidas, del frotamiento. Por ejemplo, parece más conveniente considerar el desgaste por frotamiento (FW, por "fretting wear") como frotamientos de pequeños desplazamientos que son consecuencia de las vibraciones externas, mientras al frotamiento por fatiga (FF, por "fretting fatigue") como resultado de desplazamientos pequeños que sean una consecuencia de la deformación (cíclica) de una de las dos partes en contacto. Y al frotamiento por corrosión (FC, por "fretting corrosión"), se le suele utilizar cuando una reacción química domina durante el proceso tribológico, y con la participación de deslizamiento de pequeña amplitud. (Kapsa, Fouvry, & Vincent, 2005)

El daño por frotamiento ha sido observado en una variada serie de situaciones prácticas, por ejemplo, juntas remachadas, placas atornilladas, en cables (guayas), en cojinetes de bolas y en implantes biomédicos (Waterhouse, 1992).

Los implantes metálicos en el cuerpo humano son ampliamente utilizados en la cirugía, y sus procesos de corrosión y degradación están siendo investigados extensamente alrededor del mundo. Como con otros componentes estructurales, son posibles

27

mecanismos de falla en implantes ortopédicos: la fractura mecánica, el desgaste y la corrosión, o, más importante aún, las combinaciones de estos factores. Muchos implantes están expuestos a cargas elevadas y desgaste intenso, los cuales, como consecuencia de los movimientos del paciente, son repetidos un inmenso número de veces. El efecto de la degradación, consecuente en los metales, es aumentado por el hecho de que, el fluido corporal en el entorno, es corrosivo. Teniendo en cuenta el alto costo humano de la cirugía de revisión y el hecho de que incluso "pequeñas" cantidades de productos de corrosión, liberados en el tejido del cuerpo son inaceptables, es evidente que la naturaleza y distribución de productos de corrosión, liberados en el cuerpo por implantes ortopédicos sigue siendo un problema importante. Se están desarrollando implantes modulares y la corrosión y el desgaste por frotamiento son posibles problemas de degradación. (Hoeppner & Chandrasekaran, 1994).

Regímenes del frotamiento

El desplazamiento relativo induce carga tangencial, que puede ser descrita por el ciclo de frotamiento: $Q(t)=f(\delta(t))$ (figura 2.5). Se identifican dos condiciones de frotamiento: deslizamiento parcial, que se caracteriza por un ciclo elíptico cerrado, asociado a un contacto compuesto zonas de deslizamiento y atascamiento. La condición de desplazamiento bruto, la cual se identifica mediante un ciclo de frotamiento cuadrático disipativo, está relacionada con un deslizamiento completo que se produce en toda la interfase (Fouvry, Kapsa, & Vincent, 2003).

El coeficiente de fricción cambia durante la carga y esto puede conducir a un cambio de condición de deslizamiento. Entonces, es posible definir distintos regímenes de frotamiento: Régimen de Deslizamiento Parcial (PSR, por "Partial Slip Regime"): cuando se mantiene la condición de deslizamiento parcial durante la prueba; Régimen Mixto de Frotamiento (MFR, por "Mixed Fretting Regime"): cuando hay una transición de un estado a otro; Régimen de Deslizamiento Bruto (GSR, por "Gross Slip Fretting"): cuando se mantiene la condición de desplazamiento bruto. En la figura 2.6 se indica la correlación entre el régimen de deslizamiento y la evolución del daño (Fouvry, Kapsa, & Vincent, 2003).

Figura 2. 5. Ilustración de las condiciones de deslizamiento por frotamiento (Fouvry, Kapsa, & Vincent, 2003)

El agrietamiento se encuentra principalmente en los regímenes de deslizamiento parcial y regímenes mixtos de frotamiento establecidos bajo condición de deslizamiento parcial, considerando que el desgaste es observado para amplitudes grandes en regímenes de desplazamiento bruto. En la figura 2.6, se señala el mapeo experimental de la respuesta de material (MRFM, "Material Response Fretting Mapping"). Un defecto importante de este enfoque de asignación es el uso de variables mecánicas como la fuerza normal y la amplitud de desplazamiento que, dependiendo de la geometría y propiedades mecánicas estudiadas, no puede permitir una correlación directa entre situaciones de frotamiento (Fouvry, Kapsa, & Vincent, 2003).

Parámetros que afecta el frotamiento

Los fenómenos de frotamiento son complejos y pueden ser influenciados por numerosos parámetros. Entre estos, los más importantes son considerados en este aparte.

Naturaleza de los cuerpos en contacto

En los casos de contactos homogéneos (mismo material para los dos cuerpos de deslizamiento), las propiedades de los materiales se han utilizado para describir el agrietamiento inducido por frotamiento. Varias aleaciones de aluminio han sido

comparadas bajo los dos regímenes, "deslizamiento parcial" y "mixto", y comportamientos diametralmente diferentes fueron observados. Estos comportamientos pueden explicarse en términos de la resistencia de estos materiales a la nucleación y la propagación de grietas. De manera similar, para una aleación Ti–6Al–4V, la aparición de la grieta dominante fue claramente relacionados con su límite de fatiga. Generalmente, en los casos de desgaste inducido por frotamiento, las partículas se desprenden mucho antes que la iniciación de la grieta por fatiga y parece razonable asociar el dominio de desprendimiento de partículas con el régimen de desplazamiento bruto. Determinación del comportamiento por frotamiento es mucho más complejo en los casos de contacto heterogéneo (Kapsa, Fouvry, & Vincent, 2005).

Figura 2. 6. Representación de la carta de frotamiento que combina el análisis del régimen de frotamiento (RCFM) con la respuesta del material (MRFM) (Fouvry, Kapsa, & Vincent, 2003)

Naturaleza de la carga

La carga que actúa en contacto de materiales es uno de los principales parámetros. Representa el "motor" de los daños. La carga de contacto parece depender fuertemente del comportamiento normal de contacto, en particular del coeficiente de fricción. Debe considerase su evolución con los parámetros tribológicas típicos, como la fuerza normal y la amplitud del deslizamiento. La distribución de la presión de contacto, también, es un parámetro importante. Normalmente, los tribologistas consideran que un contacto bola sobre plano conduce a una distribución de presión parabólico. Esto no es siempre el caso en muchas situaciones prácticas. Es de primordial interés considerar la distribución de presión real en el contacto real el cual tiene que ser reproducido durante las pruebas de laboratorio. En la mayoría de los casos, si se tiene en cuenta que el volumen elemental desgaste local es proporcional a la energía local que se disipó, el perfil de la huella de desgaste representa de hecho un perfil de la distribución de presión. Como a menudo el deslizamiento genera un tercer cuerpo, el efecto de este cuerpo extraño en el contacto debe ser considerado. La distribución de presión puede fuertemente ser afectada y modificada por el fenómeno tribológico y ubicaciones de máxima resultante en la distribución de la tasa de desgaste local modificada. (Kapsa, Fouvry, & Vincent, 2005)

Entorno

Un entorno químicamente activo puede provocar transformación superficial y también puede acelerar el deterioro de materiales en contacto, si el desgaste por frotamiento elimina las capas de superficies protectoras. Los daños inducidos en las superficies del material son sensibles a las variables implicadas en el proceso frotamiento. Estas variables pueden clasificarse en tres categorías: las condiciones de contacto (aspectos mecánicos), las condiciones ambientales (aspectos químicos) y las propiedades del material en contacto (aspectos del material). Los mapas de frotamiento también parecen ser una herramienta muy útil en el análisis de los efectos ambientales. La humedad relativa puede modificar la fuerza tangencial necesaria para imponer el desplazamiento y la transición entre el deslizamiento parcial y las condiciones de desplazamiento bruto. Los cambios de propiedad 31 del material son tenidos en cuenta por MRFM y puede mostrar las diferencias debidas, por ejemplo, a la fragilización por hidrógeno. En caso de desgaste inducido por frotamiento, la formación de plaquetas puede impedir que los desechos sean expulsados del contacto y así reducir el desgaste. (Kapsa, Fouvry, & Vincent, 2005)

Frecuencia

La frecuencia de movimiento es un parámetro importante para el comportamiento dinámico de un sistema mecánico. La frecuencia de hecho puede cambiar la amplitud de deslizamiento cuando se activa alguna resonancia o amortiguación. Los MRFM son influenciados por la frecuencia de la carrera. Las frecuencias altas de carrera pueden inducir calentamiento y así modificar el coeficiente de fricción o propiedades del material. El principal efecto de frecuencia de carrera debe explicarse en términos del concepto de tercer cuerpo. Una vez formado el contacto, los desechos son atrapados. Son necesarios varios ciclos antes de su expulsión y este fenómeno mecánico puede ser influenciado por la velocidad de movimiento (relacionada con la frecuencia). En caso de aceros de baja aleación y aceros inoxidables, pequeños cambios en la frecuencia (de 0,1 a 12,5 Hz) mostraron aumentar el riesgo de nucleación de grietas; la alta frecuencia favorece la expulsión de los desechos y evita así el efecto beneficioso del tercer cuerpo. Al considerar la geometría del contacto, entre más fácilmente es expulsado del contacto el desecho, más fácilmente tienden a nuclear las grietas. Este factor es de especial importancia en aplicaciones industriales debido a la amplia gama de frecuencias (0,01 Hz a varios kilohercios) observado en sistemas reales, y es necesario seguir trabajando para analizar plenamente sus efectos (Kapsa, Fouvry, & Vincent, 2005).

Temperatura

La temperatura de contacto, a menudo erróneamente interpretada como aumento de la temperatura y uno de los principales factores que afectan el frotamiento, se estima sólo de observaciones metalográficas. Por ejemplo, áreas de grabado blanco observadas en cortes transversales se utilizaron como un indicador de temperatura muy alta. Los resultados, basados en el monitoreo de los potenciales eléctricos de la interfase, indican que el aumento de la temperatura media de contacto es del orden de 20 K, para un acero carbono medio en determinadas condiciones experimentales. Sin embargo, el efecto de la temperatura no puede ser desestimado, ya que el aumento de la temperatura en la interfase de contacto tiene un efecto significativo sobre los aspectos mecánicos y químicos de procesos de frotamiento de desgaste y de fatiga. Una medición directa de la temperatura de contacto en frotamiento es difícil de realizar debido a la naturaleza del campo de temperatura (tanto en dominios de espacio y tiempo) y debido a las limitaciones de las técnicas de medición. Por lo tanto, están surgiendo modelos teóricos y numéricos como el enfoque más viable y práctico (Kapsa, Fouvry, & Vincent, 2005).

3. Marco Metodológico

En esta sección se describe los procedimientos empleados, detalles del material de los especímenes de prueba, la configuración experimental, las técnicas utilizadas para medir las variables de prueba, así como también, los detalles del plan de ensayos.

La investigación se desarrolló en cuatro fases: La primera, correspondiente a la revisión de la literatura y definición de las variables del fenómeno físico objeto de estudio. La segunda, en la que se adquirió, preparó y caracterizó el material del espécimen de ensayo. La tercera incluyo el diseño experimental y desarrollo de las pruebas. Una cuarta y última fase para análisis de datos y/o resultados y conclusiones finales. En la figura 3.1 se muestra un esquema de las fases anteriormente descritas.

3.1. Nivel y Diseño de la Investigación

En la investigación se adoptó un diseño experimental, ya que se sometió al material caso estudio, acero inoxidable austenítico ferrítico (dúplex) SAF 2507, a determinadas

parámetros controlados a fin de conocer sus efectos en el comportamiento tribológico (fricción y desgaste); con un nivel de tipo explicativo, y así conocer cómo los cambios de los parámetros (las variables de operación) carga, velocidad, duración del experimento, entre otras, afectan a las variables tribológicas seleccionadas, el coeficiente de fricción y el coeficiente de desgaste.

3.2. Estado del Arte y Definición de los Parámetros de Ensayos

Revisión de la literatura

En esta fase se desarrolló la ampliación de la revisión bibliográfica presentada en el proyecto de investigación, mediante la revisión documental de artículos e informes científicos relacionados con el problema planteado o que guardaban alguna vinculación con el mismo en relación a los métodos y variables.

Para obtener el estado del arte, se realizó el siguiente procedimiento: 1) búsqueda de información; 2) lectura y clasificación de la información 3) redacción del documento. La búsqueda se realizó con la herramienta digital (internet) en base de datos con por ejemplo ScienceDirect, usando palabras claves en el idioma ingles como: friction, wear, dry sliding, fretting, duplex, stainless steel, biomedical aplication. Se realizaron descargas de fuentes abiertas o "gratuitas" en el periodo comprendido entre el 2010 y el 2020. La clasificación (fichaje) se realizó en formato digital, agrupando los artículos en dos categorías: a) relacionado directamente con el objeto del problema de investigación, b) vinculado con métodos, equipos, variables, teorías sobre el tema de biotribología. La elaboración del documento, involucro un esfuerzo adicional en la traducción al castellano, junto con la contextualización del argumento en los dos criterios seleccionados, presentándose la redacción de manera cronológica.

Esta fase tuvo como propósito reflejar los avances y el estado actual del conocimiento en el comportamiento tribológico del acero inoxidable súper dúplex en aplicaciones de bioingeniería y en particular en el área médica de ortopedia y osteosíntesis, tomando como fuentes investigaciones previas, información y bases teóricas, entre otras. Adicionalmente, la revisión de la literatura, sirvió para la construcción de las bases teóricas y definición de las variables y/o parámetros para los ensayos, como se describe más adelante. Cabe destacar, que el abordaje de un campo nuevo, como lo es la tribología del acero dúplex en aplicaciones médicas, limitó la disponibilidad de fuentes publicadas sobre el tema.

Selección de los parámetros de ensayo

Los experimentos se diseñaron en función de evaluar al menos tres variables de operación de las aplicaciones biomédicas en las que existen movimiento relativo, como placas de fijación y prótesis (particularmente de las extremidades inferiores), las cuales son: la presión o carga normal, la velocidad tangencial o de deslizamiento, y la duración o distancia de deslizamiento.

Con la finalidad de estimar los niveles de cada una de los parámetros elegidos, se realizó investigación documental sobre la altura y peso promedio de los pacientes con implantes y/o prótesis en miembros inferiores, las velocidades relativas de los miembros inferiores del cuerpo humano y las presiones promedios a las cuales están sometidas, en particular, las rodillas, así como la duración estimada de prótesis en vitro, que se resume seguidamente.

La presión máxima promedio que experimenta una prótesis de rodilla para una persona de 75 kg puede tomarse como 37 MPa (Rodriguez, Urriolagoitia Sosa, Torres, Hernandez, & Urriolagoitia Calderon, 2013). A partir de esta presión se determinó la carga necesaria para simular las condiciones de la articulación en los ensayos bola sobre disco y bola sobre anillo utilizando la teoría de esfuerzo de contactos hertzianos, la cual resulto ser tan pequeña, en el orden de 0,0001 Kg, que se dificulta la emulación en los tribómetros seleccionados. Por otro lado se conoce, que las cargas picos pueden alcanzar valores de tres veces el peso corporal durante condiciones de marcha normal cinco veces durante actividades con esfuerzo, tales como subir escaleras o correr (McGloughlin & Kavanagh,

37

2000). Por lo ante descrito, se optó por los siguientes valores de carga 9 N, 19 N y 29 N y para el tribómetro bola sobre anillo, de 10N y 70N para el tribómetro bola sobre plano.

En cuanto a la velocidad de deslizamiento se tomó como referencia las velocidades tangenciales de los miembros inferiores para un hombre adulto al andar (Vaughan, Davis L, & O'Connor, 1999), por ejemplo, considerando las velocidades del muslo y la pantorrilla derecha (0,68 m/s y 0,52 m/s, respectivamente), se obtiene la velocidad relativa entre el muslo y la pantorrilla, la cual resulta ser la velocidad de deslizamiento de la articulación de la rodilla, de 0,16 m/s, inicialmente se toma está a fin de emular la velocidad de deslizamiento de la rodilla, pero algunos de los tribómetros presentan limitaciones del hardware para lograr esta emulación. Así que se optó para el tribómetro bola sobre anillo por una velocidad de 2,0 m/s. Para el tribómetro bola sobre plano, el cual simula un movimiento reciprocante, la velocidad de deslizamiento no es constante, pero el parámetro equivalente es la frecuencia de la oscilación, la cual selecciono de un 10 Hz y 30 Hz correspondientes a una velocidad máxima oscilación de 0,00628319 m/s y 0,01884956 m/s, respectivamente). Estos niveles de velocidad y frecuencia permiten efectuar comparaciones con investigaciones previas en acero Dúplex.

Respecto a las distancias de desplazamientos (tiempos o ciclos de duración), se consideró simular la duración promedio de prótesis de las extremidades inferiores, que es de 10 años para personas mayores de 60 años con una vida sedentaria, según estimaciones (Rodríguez, Garcia, Vite, Merchán, & Sandoval, 2010), esta duración corresponde, en consideración del ciclo de marcha, a un total 2857 pasos por día o 1000 m por día para una longitud del pie de 0,35 m, que se puede tomar en proporciones equivalentes para su emulación en tribómetros. En el caso de tribómetro bola sobre plano, en el cual se eligió una amplitud de oscilación de 100 μ m (a fin de lograr un régimen de deslizamiento completo), la distancia máxima será de 200 m (10⁵ ciclos) y la distancia mínima de 2 m (10⁴ ciclos). Para el tribómetro bola sobre anillo la distancia máxima fue de 2000 m, media de 1000 m y mínima de 500 m.

38

No obstante a que la aplicación biomédica en consideración es lubricada (con fluidos corporales o fluido sinovial) bajo régimen de película limite (Myant & Cann, 2014), se consideró una evaluación en seco (sin lubricante), a fin de establecer una base preliminar para futuros ensayos con lubricante y adicionalmente, permitir la comparación con otras investigaciones donde se empleó un acero inoxidable dúplex sin lubricante (Szyndelman, 2008), (Renedo, 2010), (Mestra, Fargas, Anglada, & Mateo, 2010).

En el esquema de la figura 3.5, se resume la selección de los parámetros y niveles para cada uno de los tribómetros a emplear.

Otros parámetros y condiciones de ensayos se muestran en la tabla 3.1 y 3.2.

Figura 3. 2. Condiciones de los ensayos tribológicos (parámetros y niveles)

Tabla 3. 1.Condiciones de ensayo de fricción y desgaste por deslizamiento en tribómetro bola sobreanillo

TIPO DE ENSA	TIPO DE ENSAYO: FRICCIÓN Y DESGASTE EN DISPOSITIVO BOLA SOBRE ANILLO								
	VARIABLES OPERATIVAS								
CARGA (N)	VELOCIDAD (m/s)	D	DISTANCIA (m)						
9 19 29	0,9 2	500	1000	2000					
	TIPO DE MOVIMIENTO:	Deslizamiento (continu	o)						
	ESTRUCTURA DE LOS TRIBO-SISTEMAS								
CARACTERISTICAS	CARACTERISTICAS TRIBOELEMENTO 1 TRIBOELEMENTO 2 LUBRICANTE ATMOS								
Tipo de material/ elemento	AISI 52 100/ Bola	SAF 2507/ Anillo	Sin Lubricante	Aire					
Geometría y dimensiones	Esférico	Cilíndrico							
Composición (% peso)	D=6mm 1,35 a1,65 Cr; 0,9 a	D=32mm 25 Cr; 7 Ni; 4 Mo;							
	1,10 C; 0,15 a 0,35 Si: 0 25 a 0 45 Mp	0,25 N ^b							
Dureza promedio	838 HV10 ^a	95,94 HRb							
Rugosidad promedio	0,01 μm ^a	0,1625 μm							

(a) Valores típicos extraídos de la norma ASTM G 99-04 (ASTM, 2004)

(b) Valores típicos tomados de (IMOA, 2012).

Tabla 3. 2.

Condiciones de ensayo de desgaste por frotamiento en tribómetro bola sobre plano

	TIPO DE ENSAYO: DESGASTE POR FROTAMIENTO EN DISPOSITIVO BOLA SOBRE PLANO								
VARIABLES OPERATIVAS									
CAR	GA (N)	FRI	ECUENCIA (Hz)	AMPLITUD (µm)	CICLOS				
1	70	10	30	100	10000	100000			
		TIPO	DE MOVIMIENTO: D	eslizamiento Oscilante (i	reciprocante)				
			ESTRUCTU	RA DEL TRIBOSISTEMA					
CARACTERÍSTICAS		AS	TRIBOELEMENT	TRIBOELEMENTO 2	LUBRICANTE	ATMÓSFERA			
			01						
Tipo de	elemento /n	naterial	Disco/ SAF 2507	Bola/ AISI 52 100	Sin Lubricante	AIRE			
Geome	tría y dimen	siones	Cilíndrico plano	Esférico					
			D _{EXT} =30 mm	D= 6 mm					
			espesor= 10 mm						
Comp	oosición (% p	oeso)	25 Cr; 7 Ni; 4	1,35 a 1,65 Cr; 0,15 a					
			Mo; 0,23 N; 0,02	0,35 Si; 0,25 a 0,45					
			C ^b	Mn;0,90 a 1,10 C ^a					
Du	reza promed	lio	240 HV	838 HV10 ^a					
Rugosidad promedio		0,02 μm	0,01 μm ^a						

(a) Valores típicos extraídos de la norma ASTM G 99-04 (ASTM, 2004)

(b) Valores típicos tomados de (IMOA, 2012).

3.3 Adquisición del material

Probetas para ensayos de frotamiento en tribómetro bola sobre plano

Una barra de Acero Dúplex SAF 2507 de 30 mm de diámetro y 1000 mm de longitud, fue proporcionada por SANVEN STEEL, C.A., cuyo certificado de inspección del material, se encuentra disponible en anexo A. En este certificado se muestra la caracterización química y propiedades mecánicas típicas, del espécimen empleado en el estudio.

La barra se cortó en cinco discos de 10 mm de espesor mediante corte por electroerosión de hilo, en equipo Marca Charmilles, Modelo Robofil 290 de la Empresa Promecor 2 C.A., ubicada en la Zona Industrial La Quizanda. Mediante el sistema de electroerosión de hilo, se logra mayor precisión y calidad para el corte, sin producir ninguna alteración y con menor desperdicio de material. En la figura 3.2 (a) se muestra una imagen de la probeta y en el anexo c, se tiene un plano con sus especificaciones.

Probetas para ensayo de deslizamiento en tribómetro bola sobre anillo

Los especímenes o probetas (cilindros o anillos) del acero inoxidable dúplex SAF 2507 se fabricaron a partir de una barra tubular de 150 mm de largo, 32mm de diámetro y 2 mm de espesor, suministradas por un proveedor local. A la barra se le realizó un mecanizado en torno para cortar piezas en un ancho 10 mm, obteniéndose solo 12 probetas, y luego ensamblaron con ajuste a presión en cilindros o anillos de broce comercial, todo ello para permitir el montaje de los especímenes en el tribómetro.

Probetas de contraparte para los ensayos en tribómetro

Las bolas o esferas son de acero AISI 52100 de 6 mm de diámetro, de uso estándar de cojinetes SKF 6202-2Z disponible comercialmente. Se consideró la utilización de este acero como contraparte, principalmente, gracias a su alta dureza, alrededor de cuatro veces más que la dureza del acero dúplex empleado, en concordancia con lo sugerido por Rabinowicz (1965). Lo anterior, permitió no considerar el desgaste de la bola en los cálculos de volumen de desgaste, como se explica más adelante en la evaluación de la huella.

Figura 3. 3. Especímenes de prueba (probetas) para los ensayos en tribómetro (a) Deslizamiento (b) Frotamiento

3.4. Preparación de las muestras

Probetas para ensayos de frotamiento en tribómetro bola sobre plano

Las probetas tipo disco se sometieron a una preparación estándar para la evaluación metalográfica de acuerdo a ASTM E 112.

Tantos las probetas como las bolas se realizó a una limpieza con solución desengrasante mediante ultrasonido, a fin de remover el lubricante y otros residuos y finalmente, fueron secadas con aire para eliminar residuos de los solventes utilizados.

3.5. Caracterización de la microestructura, composición química y propiedades superficiales del material

La caracterización de la microestructura del material se llevó a cabo por medio de las técnicas de microscopia óptica (MO) de acuerdo a las normas ASTM E3 y ASTM E340 y sólo incluyó la verificación de las fases presentes (austenita y ferrita), la distribución de fase del material en estudio y la química elemental.

Para el análisis de la microestructura del material, las muestras se prepararon por las técnicas convencionales de desbaste y pulido. Para la observación de la microestructura se

utilizó como reactivo de ataque: 5 mL de ácido nítrico (HNO₃) y 15 mL de ácido clorhídrico (HCl) durante un tiempo de 10 s aproximadamente.

La verificación de la composición química del material se realizó por microscopia electrónica de barrido (MEB) mediante el método del análisis por espectroscopia de dispersión de energía de rayos X (EDX).

A fin de realizar una caracterización mecánica preliminar del material se dispusieron de dos tipos de ensayos superficiales, específicamente microdureza y la dureza según ASTM E384 y ASTM E18, respectivamente y la rugosidad superficial con palpador de punta (de diamante) en concordancia con JIS B 0601-2001 (ISO 13565-1).

Estos ensayos se efectuaron en equipos disponibles en el Laboratorio de Materiales de la Escuela de Ingeniería Mecánica de la Universidad de Carabobo (LMAT-UC) y en Centro de Microscopia Electrónica de la Escuela de Metalurgia de la Universidad Central de Venezuela (CME-UCV).

3.6. Equipo de ensayo tribológico

Los datos experimentales de fricción y desgaste, se obtuvieron de ensayos usando tribómetros tipo: (1) bola sobre plano ASTM 133, y (2) bola sobre anillo ASTM G-77. El primer tribómetro está ubicado en el Laboratorio de Tribología del Centro de Ciencias de Nuevos Materiales y Corrosión (CEMANCOR) y el segundo, está disponible en el Laboratorio de Predicciones de la Escuela de Ingeniería Mecánica (LapredIM).

EL tribómetro tipo bola sobre plano ASTM 133 (ASTM, 2002) disponible en el Laboratorio de Tribología de CEMANCOR, cuyas características de diseño y construcción se detallan en Hernández y Paiva (Hernández & Paiva, 2003). En este tribómetro, los parámetros que se pueden variar son la carga, frecuencia, y la longitud de la carrera. En esta máquina, el disco plano oscila en su soporte y la bola esta estacionaria, actuando la carga

normal. El espécimen y su contraparte de contacto, se colocan en soportes apropiados para evitar cualquier desplazamiento durante la prueba como se muestra en la figura 3.3.

El tribómetro bola sobre anillo ASTM G-77 (ASTM, 2004) es un desarrollo realizado por Turkintong en el año 1980 (Turkintong, 1980), el cual se definió con una configuración bloque sobre anillo, que satisface la ASTM G-77, luego en el año 2010, Medina y Peralta (Medina & Peralta, 2010) modificaron el mismo para adaptarlo a la configuración bola sobre anillo y por último en el año 2012 (Gloriet, 2012) implantó un dispositivo de recolección automática de datos. Los parámetros que se pueden controlar en el tribómetro son la carga normal, velocidad de deslizamiento y distancia o tiempo de duración del ensayo. En cuanto al movimiento, en esta máquina el anillo de prueba se instala sobre el eje del equipo, por lo cual este es el elemento móvil, por su parte la bola se coloca en una porta-esfera directamente en la barra de carga, por lo que permanece estacionaria, resultando un movimiento giratorio de contacto lineal no concordante. La configuración del tribómetro bola sobre anillo se muestra en la figura 3.4.

Los datos referente a la fuerza de fricción y coeficiente de fricción para los ensayos en el tribómetro bola sobre anillo, se obtuvieron mediante el registro procesado por el programa STBA desarrollado en Gloriet (2012).

El coeficiente de desgaste se determinó a partir del cálculo de volumen de la huella de desgaste dejada en la superficie del espécimen de acuerdo al estándar ASTM asociado a cada ensayo, obteniéndose las dimensiones requeridas mediante mediciones realizadas utilizando un perfilómetro, disponible en LMAT-UC y con un programa de procesamiento de imágenes, logradas por microscopia.

Finalmente, para completar la evaluación del desgaste en el espécimen ensayado se realizó caracterización por microscópica óptica y por microscopia electrónica. Para la microscopia óptica se usó un microscopio con captura de imágenes disponible en LMAT-UC. Para la microscopia electrónica se utilizó el servicio de CME-UCV con disponibilidad de análisis por difracción de rayos X (EDX). Mediante el análisis por microscopia se pudo 44 evidenciar los efectos de los parámetros de control del tribómetro en el desgaste de las probetas, determinar el régimen y mecanismo de desgaste.

3.7. Diseño Experimental

El diseño experimental se elaboró usando el enfoque de Taguchi (DET). Cuando se compara el DET con el arreglo factorial, el número de pruebas se reduce significativamente y el análisis de la relación señal a ruido S/N permite obtener la influencia de los parámetros en el comportamiento del desgaste, a un costo más efectivo. El enfoque de Taguchi ha sido utilizado por muchos investigadores como técnica de optimización (Sreenivas Rao, Kumar, Prakasham, & Hobbs, 2008), (Aherwar, Singh, & Patnaik, 2016), (Hussain, Saleem, & Ahmad, 2019). El procedimiento general de DET, se encuentra en Roy (2010).

Figura 3. 4. Esquema de la máquina para ensayos de desgaste por frotamiento

Figura 3. 4. Esquema de la máquina para ensayos de fricción y desgaste por deslizamiento

Conocido el número de parámetros y el número de niveles, utilizando la tabla de selección de matriz que se muestra en la figura 3.6, se determina la configuración de la matriz ortogonal (el subíndice representa el número de experimentos que deben completarse). Una vez que se ha determinado el tipo de arreglo, se puede consultar la matriz predefinida creada utilizando un algoritmo desarrollado por Taguchi (Roy R. K., 2010), logrando que cada variable y valor pueda probarse igualitariamente.

Por ejemplo, para los ensayos en el tribómetro bola sobre anillo, se tiene tres parámetros (carga, velocidad, y ciclos) y tres niveles (alto, medio y bajo), de la figura 3.6a, puede verse que la matriz adecuada es L₉. En la matriz L₉ se dan nueve experimentos diferentes (figura 3.6b). Los niveles designados como 1, 2, 3 etc. deben sustituirse en la matriz con la descripción del nivel real, ver tabla 3.3 para el caso del diseño experimental en el tribómetro bola sobre anillo. Los tratamientos de cada experimento se ejecutaron con dos réplicas. Similar procedimiento se realizó para obtener la matriz del ensayo bola sobre plano, mostrada en la tabla 3.4.

			Número de Parámetros										
		2	3	4	5	6	7	8	9	10	11	12	
reles	2	L4	L4	L8	L8	L8	L8	L12	L12	L12	L12	L16	
le Niv	3	L9	L9	L9	L18	L18	L18	L18	L27	L27	L27	L27	
erod	4	L'16	L'16	L'16	L'16	L'32	L'32	L'32	L'32	L'32			
Núm	5	L25	L25	L25	L25	L25	L50	L50	L50	L50	L50	L50	

(a)

Experimento	P1	P2	P3	P4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

(b)

Figura 3. 5. (a) Selector de Matrices Ortogonales y (b) matriz L9

Experimento	Carga (N)	Velocidad (m/s)	Distancia (m)
1	9	0,9	500
2	9	2	1000
3	9	2	2000
4	19	0,9	1000
5	19	2	2000
6	19	0,9	500
7	29	0,9	2000
8	29	2	500

2

1000

Tabla 3. 3.Matriz Ortogonal de Ensayos para tribómetro bola sobre anillo

Tabla 3. 4.Matriz Ortogonal de Ensayos en tribómetro bola sobre plano

29

Experimento	Carga (N)	Frecuencia (Hz)	Ciclos
1	10	10	10 ⁴
2	10	30	10 ⁵
3	70	10	10 ⁵
4	70	30	10 ⁴

3.8 Análisis estadístico de los datos

9

Una vez que se ha determinado el diseño experimental ortogonal y las pruebas han sido ejecutadas, la característica del comportamiento medido para cada prueba, puede utilizase para analizar el efecto relativo de los diferentes parámetros en el material investigado.

Para determinar la influencia de cada factor o parámetro en los resultados, DET cuenta con el análisis del cociente o razón S/N. La razón S/N combina tanto el nivel medio (señal) de la característica y su variación en torno a esta media (ruido). Tres funciones de pérdida de la razón S/N están disponibles dependiendo del tipo de

característica o variable de respuesta: (1) "entre más pequeña mejor", la variable no excederá cierto valor máximo, (2) "entre más grande mejor", la variable no será mayor a un valor mínimo y (3) "nominal es lo mejor", la variable deberá tener un valor específico. De estas funciones "entre más pequeña es mejor" es la más adecuada para describir el comportamiento tribológico, donde la meta es minimizar la respuesta y por lo tanto, la seleccionada en esta investigación para identificar el parámetro más influyente en la fricción y el desgaste por deslizamiento en seco del acero evaluado. La ecuación para calcular S/N con el criterio "el más pequeño es el mejor" es,

$$S/N = -10\log \frac{y_i^2}{n}$$
 (Ec. 3.1)

Donde, y_i son los datos observados, y n es el número de observaciones (Gutiérrez Pulido & De la Vara Salazar, 2008).

Una vez que estos valores de relación de S/N se calculan para cada factor y nivel, se obtiene el rango Δ (Δ = S/N alto – S/N bajo) del S/N para cada parámetro, cuanto mayor sea el valor Δ (delta) para un parámetro, cuanto mayor es el efecto que la variable tiene en el proceso.

Adicionalmente, se realizó una interpretación de los resultados experimentales por análisis de promedio y análisis de la varianza (Anova). El análisis Anova generalmente se realiza sobre los resultados experimentales con el fin de identificar los parámetros de control que son estadísticamente significativos (DeCoursey, 2003). Anova se compone de (1) suma de cuadrados para las distribuciones de todos los valores característicos (datos experimentales); (2) varianza no sesgada; (3) descomposición del total de la suma en las sumas de cuadrados para todos los factores utilizados en el experimento; (4) cálculo de las varianzas no segadas a través de las sumas de cuadrados de todos los factores divido por su grado de libertad; (5) cálculo de la razón de variancia F₀ dividiendo cada varianza no sesgada por la varianza de error; y (6) búsqueda de los factores que afectan significativamente los resultados experimentales mediante el análisis de la varianza de error. Este procedimiento se puede lograr mediante la construcción de una tabla Anova utilizando una hoja de cálculo o mediante aplicaciones dedicadas de análisis de datos estadísticos

3.9. Evaluación de la huella de desgaste

Luego de realizadas las pruebas de desgaste por frotamiento, las superficies desgastadas fueron limpiadas con acetona y alcohol para descartar cualquier desecho del desgaste.

3.9.1. Determinación del volumen y coeficiente de desgaste para el ensayo de frotamiento en tribómetro bola sobre plano

El volumen desgastado se obtuvo asumiendo que no existe desgaste en la bola y todo el material perdido corresponde solo al disco, esto es posible debido a la amplia diferencia de dureza de los materiales empleados. Se consideró que la huella de desgaste en el disco plano producida por la bola es aproximadamente de la forma de un segmento o casquete esférico (ver la figura 3.7). Este volumen fue calculado a partir del perfil, determinado por el diámetro promedio de la huella, medido en dos ejes perpendiculares, y la profundidad de la huella, empleando la imagen digital, obtenida mediante un microscopio óptico Marca Unión Modelo MC 86267, equipado con cámara digital Panasonic Modelo WV CP230 y Tarjeta de Captura de Imágenes, en computador con entorno Windows XP, disponible en LMAT-UC. Las dimensiones fueron medidas utilizando el programa para el procesamiento y análisis de imágenes ImageJ (NIH, 2010). La precisión se estimó en 10 µm.

El volumen de desgaste (V_d) fue determinado mediante las ecuaciones 3.2. y 3.3. (Ruff, 1992)

$$V_d = \frac{\pi}{6} h \left(\frac{3d^2}{4} + h^2 \right)$$
 (Ec. 3.2)

$$h = \frac{1}{2} \left(D - \sqrt{D^2 - d^2} \right)$$
 (Ec. 3.3)

Donde V_d es el volumen de desgaste [mm³]; h es la profundidad de la huella [mm]; d es el diámetro promedio de la huella [mm]; D es el diámetro de la bola [mm].

El coeficiente de desgaste (*K*) de cada espécimen de prueba fue obtenido a partir de la ecuación 2.2, expresándola como se indica en ecuación 3.4., adoptando el desplazamiento acumulado para una condición de frotamiento (movimiento oscilante) según ecuación 3.5, esto permitirá la comparación con distintos aceros y otros materiales, sin considerar la dureza, en similares condiciones de operación.

$$K = {k_a / H} = {V_d / SW}$$
 (Ec. 3.4)

$$S = 2N_t \delta \tag{Ec. 3.5}$$

Donde *K* es el coeficiente de desgaste $[m^2/N]$; k_a es la constante de Archard, adimensional; *H* es la dureza del material $[N/m^2]$; V_d es el volumen de desgaste $[m^3]$; *W* es la carga normal aplicada [N]; *S* es el desplazamiento total acumulado [m]; δ es la amplitud del desplazamiento [m]; N_t es el número total de ciclos de operación.

Adicionalmente, el coeficiente de desgaste (K) se determinó de manera gráfica empleado la razón de proporción lineal del volumen de desgaste versus el producto del desplazamiento por la carga (V_d vs SW) (Magaziner, Jain, & Mall, 2008).

3.9.2. Identificación del régimen y mecanismo de desgaste por frotamiento

La huella de desgaste producida en la prueba de frotamiento fue capturada en imágenes, tanto por microscopia óptica (MO) y por microscopia electrónica de barrido (MEB), y analizadas por dispersión de rayos X de (EDX, "Energy Dispersive X Ray"), en Microscopio Electrónico Marca Hitachi Modelo S-2400 disponible en Centro de Microcopia
Electrónica de la Escuela de Metalurgia y Ciencia de los Materiales de la Facultad de Ingeniería de la Universidad Central de Venezuela. Estos análisis se realizaron con la finalidad de observar la morfología y así, estimar el régimen y los mecanismos de desgaste por frotamiento.

Figura 3. 6. Esquema para la determinación del perfil del volumen desgastado

3.9.3. Determinación el coeficiente de fricción, el volumen y el coeficiente de desgaste en tribómetro bola sobre anillo

La data referente a la fuerza de fricción y coeficiente de fricción, se obtuvieron mediante el programa de captura de datos STBA diseñado por Gloriet (2012), los datos eran sensados por los elementos del sistema de recolección para luego ser procesados por el programa desarrollado, arrojando los datos de: tiempo de ensayo, velocidad de giro y fuerza de reacción del motor y fuerza de fricción y coeficiente de fricción calculados por el programa. Una imagen de la pantalla de captura de programa se muestra en la figura 3.8.

Mientras que el coeficiente de desgaste se determinó a partir de la medición del volumen de la huella de desgaste dejada en la superficie del anillo, obteniendo las dimensiones requeridas utilizando el perfilómetro marca MITUTOYO modelo PJ- 2500, apreciación de 0,001 milímetros, presente en el Laboratorio de Metrología de la Escuela de Ingeniería Mecánica. Con el propósito de minimizar el error en los resultados se realizaron ocho mediciones del ancho y profundidad de la huella de desgaste a lo largo de la periferia de cada anillo siguiendo la distribución mostrada en la figura 3.9, luego de lo cual se calculó

el volumen tomando estos puntos como base, con este y haciendo uso de la ecuación 3.6 y 3.7 descritas por Medina y Peralta (2010), y luego se procedió al cálculo del coeficiente de desgaste de cada ensayo de cada material usando la ecuación 3.6 y 3.7.

$$V_d = \theta RA = \frac{\theta}{2} (D - h)$$
 (Ec. 3.6)

$$A = r^{2} \sin^{-1}(\frac{w}{2r}) - \frac{1}{4}w\sqrt{(4r^{2} + w^{2})}$$
 (Ec. 3.7)

Donde V_d es el volumen de desgaste [mm³]; A es el área transversal de la huella de desgaste [mm²]; h es la profundidad de la huella [mm]; θ es el ángulo de barrido [mm]; D es el diámetro del anillo [mm], r es el radio de la bola [mm]; w es el ancho de la huella [mm].

En función de evaluar cualitativamente la condición final de las probetas ensayadas se realizó una inspección por microscópica óptica haciendo uso de un microscopio marca UNION, modelo MC 86287, capacidad 0-1000X, que se encuentra en el Laboratorio de Materiales del Departamento de Materiales y Procesos de Fabricación de la Escuela de Ingeniería Mecánica (LMAT-UC), con el cual se pudo evidenciar los efectos del desgaste en las probetas.

				C		0 00:00:00	
Nr.	Tiempo	R.P.M.	Fuerza Fricción	Temperatura	Peso Carga (N)	Coeficiente de Roce	~
93	0 00:00:06	840,0	2,61	25,1	4,45	0,06	
94	0 00:00:11	960,0	5,22	25,1	4,45	0,12	
95	0 00:00:14	1.320,0	4,93	25,1	4,45	0,11	
96	0 00:00:20	1.080,0	4,93	25,1	4,45	0,11	
97	0 00:00:22	960,0	5,22	25,1	4,45	0,12	
98	0 00:00:26	1.080,0	4,35	25,1	4,45	0,10	
99	0 00:00:32	1.080,0	4,93	25,1	4,45	0,11	
100	0 00:00:39	1.200,0	6,09	25,1	4,45	0,14	
101	0 00:00:42	1.080,0	4,93	25,1	4,45	0,11	11
102	0 00:00:46	1.200,0	4,64	25,1	4,45	0,11	
103	0 00:00:49	1.200,0	4,64	25,1	4,45	0,11	
104	0 00:00:54	1.200,0	4,64	25,1	4,45	0,11	
105	0 00:00:58	1.200,0	4,64	25,1	4,45	0,11	
106	0.00-01-05	0.039	A 93	25.1	1 15	0.11	~
<u><</u>			10				3

Figura 3. 7. Programa de recolección de datos STBA (Gloriet, 2012)

Figura 3. 8. Distribución de toma de datos de ancho y profundidad de la huella

4. Resultados y Discusión

En esta sección se describen los resultados logrados en esta investigación experimental y se expresan los comentarios, análisis e interpretaciones específicas de los estudios realizado que permiten evaluar el comportamiento tribológico del acero inoxidable dúplex SAF 2507 ante contacto por deslizamiento.

4.1. Composición química y la microestructura del material

La composición química y la caracterización de la microestructura del material evaluado se obtuvieron por técnicas y equipos especificados en capítulo 3, sección 3.4.

La composición química de las probetas de acero inoxidable dúplex SAF 2507 evaluadas en el tribómetro tipo bola sobre plano se detalla en la tabla 4.1. Se puede constatar que los datos obtenidos, al comparar con los suministrados en el certificado de origen del material (ver anexo A), se encuentran dentro del intervalo y en valores máximos permisibles indicados en la norma ASTM 240 (ASTM, 2004). Además, el níquel (Ni) y el cromo (Cr) están dentro del intervalo. En cuanto a los demás valores de la composición química se puede apreciar poca desviación y el cumplimiento de los niveles requeridos, a excepción del C, Si y Mn, como se logró verificar mediante el método del análisis por espectroscopia de dispersión de energía de rayos X (EDX) cuyos resultados son mostrado en la tabla 4.16.

Respecto a las diferencias a los valores obtenidos (mostrados en un valor promedio de los datos de obtenidos en los puntos seleccionados), estas pueden ser atribuidas al empleo de distintas técnicas de evaluación. Como adicional, si comparamos los requerimientos de las normas empleadas para especificar aceros quirúrgicos ASTM F138/139 con los datos del súper dúplex evaluado, se destaca los valores más bajos del Níquel y el Manganeso, metales se asocian con toxicidad a seres vivos. En contraste, se aprecia valores obtenidos más altos de Silicio, Molibdeno y Cromo, que presenta mayores tolerancias en el cuerpo humano.

l abla 4. 1.				
Cantidad de co	omponentes del ace	ero inoxidable	dúplex 2507 (%	en peso)

	С	Si	Mn	Cr	Ni	Мо	Cu	Ν
PROMEDIO *		1,56	0,98	23,81	3,52	5,45		
SANDVICK	0,014	0,33	0,77	25,15	6,96	3,91	0,11	0,282
ASTMA240/A240M	0,030	0,80	1,20	24–26	6–8	3–5	0,5	0,24–0,32
ASTM F138/139	0,030	0,75	2,0	17-19	13-15	2,25-3,0	0,52	0,10

(a) Imagen capturada

(b) Imagen detectada

(c) Mediciones de la imagen analizada

La microestructura original, la cual consiste de dos fases, islas de austenita en una matriz de ferrita, las cuales pueden observarse en la figura 4.1a, obtenida por captura de imagen mediante microscopia óptica. Del análisis de la imagen 4.1b, se obtuvo las proporciones que corresponden a estas fases aproximadamente de 48, 3 % austenita y 51,7% de ferrita como se detalla en la figura 4.1c.

4.2. Propiedades superficiales del material

Las propiedades del material evaluado se obtuvieron por intermedio del método y equipos especificados en capítulo 3, sección 3.4.

4.2.1 Probetas para deslizamiento en tribómetro bola sobre anillo

En la tabla 4.2 se muestra la caracterización de la superficie (la rugosidad) y la dureza de las probetas acero dúplex SAF 2507 empleados en el tribómetro tipo anillo sobre anillo.

Tabla 4. 2.Caracterización para el acero inoxidable dúplex 2507empleado en tribómetro tipo anillo sobre anillo

Propiedad del material	Valor
RUGOSIDAD R_a , μm	0,016 ± 0,01
DUREZA HRb	95,9 ± 0,1

Una de las propiedades de superficie evaluadas del material en estudio fue la rugosidad, la cual se conoce que afecta la fuerza de fricción en su componente de rugosidad (Suh, 1986). Los resultados de los ensayos de rugosidad reportaron un valor promedio, luego de cinco repeticiones, de R_a = 0,163 µm con desviación estándar de 0,01280. La norma ASTM G77-98 (ASTM, 2004) tomada en referencia para esta evaluación, específica para anillo una rugosidad entre 0,152 µm a 0,305 µm en la

dirección del movimiento. Como se puede notar la rugosidad promedio obtenida cumple con las especificaciones que indica la norma referida.

La otra propiedad de superficie evaluada fue la dureza del material en estudio, la cual se conoce que contribuye a la fricción en su componente de adhesión y surcado ("plowing") (Suh, 1986). El resultado del ensayo realizado en escala Rockwell B con una carga de 100 kg y cinco repeticiones, correspondió a un valor promedio de 95,94 con desviación estándar de 1,5143. Se aprecia que el acero SAF 2507 es un 9% más duro que el acero inoxidable austenítico generalmente empleado en aplicaciones biomédicas.

4.1.2 Probetas para frotamiento en tribómetro bola sobre plano

En la tabla 4.3 se muestra la caracterización de la superficie (la rugosidad) y la dureza de las probetas acero dúplex SAF 2507 empleados en el tribómetro tipo anillo sobre plano.

Tabla 4. 3.Caracterización para el acero inoxidable dúplex 2507empleado en tribómetro tipo bola sobre plano

Propiedad del material	Valor
RUGOSIDAD R_a , μm	0,02 ± 0,01
DUREZA HV1	243± 0,1

La recopilación de datos de la evaluación experimental del material, suponen una resistencia del acero dúplex SAF 2507 al desgaste por frotamiento, mayor que la del acero 316L, como se desprende del módulo de elasticidad reportado en la Tabla 2.1 y la dureza obtenida en la evaluación realizada (Tabla 4.2 y 4.3).

4.2. Comportamiento ante la fricción por deslizamiento

A continuación se presenta los resultados de las pruebas realizadas en el tribómetro de simulación de la fricción por deslizamiento de acuerdo a la metodología presentada en el capítulo 3, sección 3.5.

4.2.1 Análisis fenomenológico la respuesta de fricción por deslizamiento en tribómetro bola sobre anillo

El tribómetro tipo bola sobre anillo, arrojo mediante la captura del sistema de adquisición de datos, los valores del COF para las condiciones evaluadas en a intervalos de tiempo aproximadamente regulares. En la figura 4.2 se presentan una serie de curvas de los resultados del COF en función de la distancia ensayada, cada grafico muestra en línea continua el valor promedio de las réplicas de cada experimento.

Al observar los gráficos (a), (b) y (c) de la figura 4.2, del comportamiento general de la COF del acero SAF 2507, no se apreció un periodo de estable definido, sino una serie periodos de transición a lo largo del recorrido, ya reportado en otras investigaciones para el acero dúplex (Straffelini, 2002) (Szyndelman, 2008) (Medina & Peralta, 2010), esto se puede atribuir a la velocidades seleccionadas (mayor a 0,8 m/s), a la condición de superficie (baja rugosidad) y severidad del contacto en la interfase (un contacto lineal) y a el mecanismo de desgaste (delaminación). Por consiguiente, se consideró un régimen moderadamente estable, resolviendo tomar un promedio de todos los datos obtenidos como la respuesta de COF reportado para el acero evaluado. En la tabla 4.4 se muestran los resultados para cada experimento logrado, donde los valores del COF promedio de los experimentos resultaron en un intervalo 0,213 a 0,891 para las condiciones evaluadas, lo cual se considera un comportamiento friccional de moderado a severo.

De los datos expuestos en la tabla 4.4 se comprueba que el COF promedio es menor a medida que la carga normal aplicada es mayor a razón de un 29,05% y disminuye al aumentar la velocidad de deslizamiento en una proporción de 39,33%.

En la figura 4.3, se muestra la respuesta de fricción por deslizamiento para el acero dúplex SAF 2507 considerando la carga o la velocidad o la distancia como una constante. De la figura 4.3a, al analizar el efecto de la carga normal evaluada considerando la velocidad como fija se observó, con excepción del experimento 2, que el COF de fricción disminuye a medida que la carga aumenta, es decir, a fuerza de fricción es proporcional a la carga normal, como se espera para la fricción seca de acuerdo a la teoría (1ra ley de Amonton-Coulomb). De los datos de la tabla 4.4, se obtiene los valores promedio del COF para 9 N, 19 N y 29 N son, 0,606, 0,550 y 0,432, respectivamente.

De igual manera, al examinar la gráfica (b) de la figura 4.3, se reseña el comportamiento de la fricción respecto a la velocidad de deslizamiento considerando la carga normal fija, se puede destacar que, para todos los experimentos realizados con el acero dúplex SAF 2507 se obtuvo que el COF disminuye con el aumento de la velocidad tangencial o de deslizamiento, siendo entonces esta respuesta una excepción a la 3ra ley de Coulomb. De la tabla 4.4, para la velocidad de 0,9 m/s y 2 m/s, se tiene un COF promedio de 0,639 y 0,441, respectivamente.

Figura 4. 2. Resultados de COF vs Carga, Velocidad de Deslizamiento y Distancia recorrida en tribómetro bola sobre anillo

Figura 4. 3. Respuesta de COF por deslizamiento en tribómetro bola sobre anillo en función de (a) la Carga Normal, (b) la Velocidad de Deslizamiento y (c)(d) Distancia recorrida

Tabla 4. 4.

Experimento	Evento A	Evento B	Promedio	Desviación
1	0,8911	0,8661	0,8786	0,0177
2	0,2126	0,4720	0,3423	0,1834
3	0,5681	0,6253	0,5967	0,0405
4	0,5748	0,5237	0,5492	0,0361
5	0,4463	0,4939	0,4701	0,0337
6	0,6118	0,6477	0,6298	0,0254
7	0,5332	0,4664	0,4998	0,0472
8	0,4017	0,3872	0,3945	0,0103
9	0,3914	0,4120	0,4017	0,0146

Resumen de resultados para COF por deslizamiento del SAF 2507 en tribómetro bola sobre anillo

Respecto al comportamiento de la fricción con la variación de la distancia, al observar las gráficas (c) y (d) de la figura 4.3, no se logró determinar una tendencia definida. Para la velocidad de 0,9 m/s, el COF promedio disminuye con la distancia, pero para 2 m/s, el COF promedio aumenta. Por otro lado, para las cargas normales de 9 N y 19 N, el COF promedio disminuye, mientras aumenta para 29 N a medida que la duración se incrementa. Esta respuesta variable respecto a la duración del ensayo del fenómeno de fricción, puede atribuirse a la interrelación de la fuerza de fricción con el desgaste, donde al cambia la topografía de la superficie debida a la generación de desechos, la fuerza de fricción se ve afectada principalmente por un mecanismo de surcado de las partículas de desgaste (Suh, 1986).

4.2.2 Análisis estadístico del ensayo de fricción por deslizamiento en tribómetro bola sobre anillo

Al interpretar la información derivada del análisis de varianza (Anova 3³), mostrado en la tabla 4.5, resulta que en los experimentos realizados todos los parámetros o factores son estadísticamente significativos (tienen un efecto en el coeficiente de fricción), al igual que sus interacciones porque F test > F critico (95%).

De resultados de la tabla 4.5, vemos que todos los valores de la probabilidad, P son menores que 0,05 (nivel de significancia de 95%). Primeramente, se tiene que el valor de P, para la "A" es el valor de P para el efecto en el COF al variar la carga normal. Puesto que el valor P es menor que 0,05, se puede establecer que la respuesta a la fricción por deslizamiento del acero dúplex SAF2507 al variar la carga normal es significativamente diferente. Por lo tanto, la carga normal afectara el COF del material. De manera similar, se interpreta para "B"- velocidad de deslizamiento y "C- la distancia recorrida. En segundo lugar, se quiere saber si existe alguna interacción entre los factores, si hay interacción, no serán independientes unos de otros. Los valores de p para la "AxB", "AxC" y "BxC", es el valor de P para el efecto en el COF al variar los factores uno a uno. Puesto que el valor P es menor que 0,05 para

63

la interacción, se puede señalar que la respuesta a la fricción obtenidos al realizar las interacciones, son significativamente diferentes y son independientes unos de otros. Para poder optimizar con eficacia la respuesta a la fricción por deslizamiento, debemos realizar prueba manteniendo constante dos de los parámetros y variar el tercero y viceversa, lo cual es ineficiente en costos y tiempo.

Tabla 4. 5. Análisis ANOVA para COF del SAF 2507 por deslizamiento en tribómetro bola sobre anillo

Fuente de Variación	SS	df	MS	F test	P-value	F crit (95%)
A (Carga)	0,094	2	0,047	4,585	0,026	3,80557
B (Velocidad)	0,175	1	0,175	16,957	0,001	4,66719
C (Duración)	0,124	2	0,062	6,031	0,010	3,80557
АхВ	0,309	2	0,154	14,975	0,000	3,80557
AxC	0,422	4	0,105	10,229	0,000	3,17912
ВхС	0,340	2	0,170	16,506	0,000	3,80557
Error	0,041	4	0,010			
Total	0,463	17				

Como se expuso en la sección anterior, la metodología Taguchi presenta un análisis que permite identificar aquellos parámetros que tienen mayor influencia en los resultados de fricción de manera más eficientemente.

Los valores de la relación S/N calculados para los factores y niveles evaluados se muestran en la tabla 4.6 y 4.7. Al observar los valores del rango en la tabla 4.7, obtenido para cada parámetro, se aprecia el COF para el acero SAF 2507, se vio más afectado por la duración del ensayo, al mostrar una mayor proporción S/N, seguido de la velocidad de deslizamiento y menos influenciado por la carga normal, al ser este

64

S/N, el valor menor. Ahora para optimizar con eficacia la respuesta a la fricción por deslizamiento, seleccionamos los niveles con la mayor razón S/N, logrando el COF con la mínima variación. Así que, el grupo de parámetros seleccionado entre los evaluados son: una carga normal de 29 N, una velocidad de deslizamiento de 2 m/s y una distancia de 500 m. Casualmente, en el ensayo #8 se probó estas condiciones y este produjo uno de los resultados más bajo (como podemos corroborar al revisar la tabla 4.4).

Tabla 4. 6.

Experimento	Carga (N)	Velocidad (m/s)	Distancia (m)	S/N
1	9	0,9	500	33,925
2	9	2	1000	4,748
3	9	2	2000	23,355
4	19	0,9	1000	23,631
5	19	2	2000	22,881
6	19	0,9	500	27,892
7	29	0,9	2000	20,471
8	29	2	500	31,689
9	29	2	1000	28,815

Relación S/N del COF por deslizamiento para el SAF2507 en tribómetro bola sobre anillo

Tabla 4. 7.

Análisis rango S/N para COF por deslizamiento para el SAF2507 en tribómetro bola sobre anillo

Nivel	Carga (N)	Velocidad (m/s)	Distancia (m)
1	20,676	105,920	93,506
2	17,245	111,488	57,194
3	23,289		66,708
Δ	6,045	5,568	36,312
Posición	3	2	1

4.3. Comportamiento ante el desgaste por adhesión

A continuación se presenta los resultados de las pruebas realizadas en el tribómetro de simulación del frotamiento de acuerdo a la metodología presentada en el capítulo 3.

4.3.1 Análisis fenomenológico del volumen y coeficiente de desgaste en tribómetro bola sobre anillo

La tabla 4.8 se listan los resultados experimentales de la evaluación del comportamiento de desgaste por adhesión del acero dúplex SAF 2507- para las condiciones de operación propuestas en las pruebas diseñadas, reportando los datos para el volumen de desgaste y el coeficiente de desgaste. Todos los experimentos se muestran con dos repeticiones, señalados con los sub índices a y b.

En la tabla 4.8 se muestran los valores para el volumen de desgaste para cada experimento, los cuales resultaron en un intervalo 1,50080 a 45,70682 mm³ para las condiciones evaluadas.

En las figuras 4.4, se muestra el comportamiento del volumen de desgaste como una función de la carga normal, la velocidad de deslizamiento y la distancia de deslizamiento, donde se puede observar la relación entre estos parámetros.

De los datos la tabla 4.8 y la gráfica (a) de la figura 4.4, infiere el volumen de desgaste calculado como una función de la velocidad de deslizamiento. Se aprecia que para un intervalo bajo de carga, el volumen de desgaste se incrementa ligeramente para los cambios de velocidad, sin embargo, para un intervalo alto de carga volumen de desgaste decrece con el incremento de la velocidad de deslizamiento. Este comportamiento no corresponde con el modelo de Archard, el cual considera que el desgaste es independiente de la velocidad. Este efecto de la velocidad puede ser explicado en términos del concepto del tercer cuerpo (Stachowiak, 2005). Una vez formada las partículas de desgaste (desechos), estas son

atrapadas y su velocidad de expulsión, tiende a disminuir por la alta velocidad del desplazamiento y la mayor presión de contacto y viceversa.

De los datos de la tabla 4.8 y la gráfica (b) de la figura 4.4, deduce el efecto de la carga sobre el volumen de desgaste. Se aprecia que el volumen de desgaste incrementa con el incremento de la carga normal en las condiciones de operación evaluadas, esta proporcionalidad valida la ecuación de Archard. Este comportamiento supone la generación de más desechos de desgaste en el área de contacto por la mayor presión hertziana presente.

Fynerimento	Carga	Velocidad	Distancia	Volumen Desgaste	Coeficiente Desgaste
Lapermiento	[N]	[m/s]	[m]	[mm ³]	x10 ⁻¹² [m ² /N]
1a	9	0,9	500	1,59922	0,35538
1b	9	0,9	500	1,50080	0,33351
2a	9	2	1000	2,70288	0,30032
2b	9	2	1000	3,96945	0,44105
3 a	9	2	2000	4,57219	0,25401
3b	9	2	2000	3,83490	0,21305
4a	19	0,9	1000	8,03054	0,42266
4b	19	0,9	1000	11,40330	0,60017
5a	19	0.9	2000	12,65760	0,33309
5b	19	0,9	2000	14,02400	0,36905
6a	19	2	500	9,51522	1,00160
6b	19	2	500	2,41830	0,25456
7a	29	0,9	2000	38,25569	0,65958
7b	29	0,9	2000	45,70682	0,78805
8a	29	2	500	4,61487	0,31827
8b	29	2	500	5,54934	0,38271
9a	29	2	1000	2,89906	0,09997
9b	29	2	1000	8,46182	0,29179

Tabla 4. 8. Resumen de resultados experimentales del comportamiento de desgaste por deslizamiento para el acero dúplex SAF 2507 para condiciones de evaluación que se especifican en tribómetro de bola sobre anillo

Figura 4. 4. Respuesta de Volumen de desgaste vs (a) Carga Normal, (b) Velocidad de Deslizamiento y (c)(d) Distancia recorrida en tribómetro bola sobre anillo

De los datos de la tabla 4.8 y la gráfica (c) y (d) de la figura 4.4 se interpreta el efecto de la distancia de deslizamiento o duración sobre el volumen de desgaste. Se observa que el volumen de desgaste, en general, incrementa con el incremento de la distancia de deslizamiento, esta proporcionalidad es la descrita por la ecuación de Archard. Además, en curva se puede notar distintos cambios de pendiente, lo que es indicativo de zonas de transición, ya reportadas por Mestra y otros (2010)

Los efectos discutidos del comportamiento proporcional del volumen respecto a la variación de la carga normal y distancia de deslizamiento, ratifican la validez de la utilización de la ecuación Archard, para determinar el coeficiente de desgaste por deslizamiento. Los valores obtenidos del coeficiente de desgaste o tasa de desgaste para las condiciones evaluadas de cada experimento, están disponibles en la de la tabla 4.8. Estos valores del coeficiente de desgaste se encuentran en un intervalo de 0,09997 x 10⁻¹² m²/N y 1,00160 x10⁻¹² m²/N, para el acero dúplex SAF 2507 evaluado, siendo este intervalo típico de desgaste moderado a severo (Bayer, 2004) (Wang, Lei, & Liu, 1999). También concuerdan correspondientes mecanismos típicos de desgaste por delaminación o adhesión (Suh N. , 1973) (Suh N. P., 1986). Adicionalmente, los valores logrados son menores que al obtenido en el trabajo de Renedo para el acero austenítico (Renedo J. , 2010).

En la figura 4.5, se muestra el comportamiento del coeficiente de desgaste promedio como una función de la distancia de deslizamiento, donde se observa la relación de esta variable para cada velocidad deslizamiento y carga normal ensayada.

De la figura 4.5, se desprende el efecto de la distancia de deslizamiento sobre el coeficiente de desgaste. Se observa que el coeficiente de desgaste decrece con el incremento de la distancia de deslizamiento en las condiciones de operación evaluadas. Por ejemplo, para las condiciones de carga de 19 N y la velocidad de deslizamiento de 0,9 m/s, en el intervalo de 1000 a 2000 m el coeficiente desgaste disminuye desde 0,51142 x10⁻¹² m²/N a 0,35107x10⁻¹² m²/N, es decir una caída de 31,35%. Para las condiciones evaluadas, los valores del coeficiente de desgaste promedio de cada experimento se sitúan en el intervalo de 0,19588 x 10⁻¹² m²/N hasta 0,72381 x 10⁻¹² m²/N, para el acero dúplex SAF 2507 en estudio.

Adicionalmente, los valores logrados para el coeficiente de desgaste para el acero dúplex SAF 2507 son menores que al obtenido en el trabajo de Renedo para el acero austenítico (Renedo, 2010).

Figura 4. 5. Respuesta del coeficiente de desgaste promedio en función de la distancia de deslizamiento en tribómetro bola sobre anillo

4.3.2 Análisis estadístico del volumen de desgaste en tribómetro bola sobre anillo

El DET permite el análisis de la dispersión de los datos recolectados mediante la determinación de la relación señal a ruido, o número S/N (Roy R. K., 2010), y así determinar cuál de los parámetros variados ejerce su mayor influencia. En la tabla 4.9 se resumen la matriz ortogonal con los valores del número S/N para cada experimento del caso estudiado.

En la tabla 4.10 se muestra la respuesta S/N para el volumen de desgaste basado en la tabla 4.9, resultando de su análisis que la distancia de deslizamiento es el parámetro que tiene el mayor efecto sobre el volumen de desgaste, seguido por la velocidad de deslizamiento y por último, la carga normal el parámetro que tiene el menor efecto en el volumen de desgaste. Adicionalmente, de la tabla 4.9 se desprende que los niveles óptimos de los parámetros evaluados, que orientan obtener un mínimo coeficiente de desgaste con la menor variación y por consiguiente, puede obtenerse con la combinación de carga normal de 9 N, una velocidad de deslizamiento de 2 m/s y una distancia de 2000m.

Experimento	Carga (N)	Velocidad (m/s)	Distancia (m)	S/N
1	9	0,9	500	26,950
2	9	2	1000	11,263
3	9	2	2000	18,096
4	19	0,9	1000	12,068
5	19	2	2000	22,791
6	19	0,9	500	-0,392
7	29	0,9	2000	17,993
8	29	2	500	17,683
9	29	2	1000	2,002

Relación S/N del coeficiente de desgaste por deslizamiento para el SAF2507 en tribómetro bola sobre anillo

Tabla 4. 10.

Tabla 4.9.

Análisis de rango S/N para coeficiente de desgaste del SAF 2507 en tribómetro bola sobre anillo

Nivel	Carga (N)	Velocidad (m/s)	Distancia (m)
1	18,770	56,620	44,242
2	13,809	71,835	25,333
3	17,652		58,880
Δ	4,961	15,216	33,547
Posición	3	2	1

4.3.3. Análisis tribológico mediante microscopia del desgaste en tribómetro bola sobre anillo

En esta sección se presentan los resultados y la evaluación de la huella de desgaste realizada en el microscopio óptico (MO) y así proceder a identificar el régimen y el mecanismo de desgaste por deslizamiento.

En las figuras 4.7 y 4.24, se muestran las imágenes o microfotografías de las huellas de desgaste obtenidas en cada prueba, realizadas mediante MO a una magnificación de 200x. Las microfotografías fueron tomadas iniciando en 71 un punto marcado como referencia y luego, girando en sentido del movimiento a cuatro posiciones a 90° una de la otra, de manera de tener una visión de la marca de desgaste en la circunferencia del anillo.

Las imágenes de las figuras 4.7 y 4.24, en general muestran una marca (huella) de deslizamiento con mucho dañó superficial, indicando condiciones de desgaste de moderado a severo para las condiciones evaluadas. Este desempeño se corrobora con los valores obtenidos del coeficiente de desgaste, los cuales son mayores a 2 x 10^{-14} m²/N, que de acuerdo a Wang (Wang, Lei, & Liu, 1999) indica la transición para el desgaste severo en aceros.

Adicionalmente, el mecanismo de desgaste es de adhesión y delaminación, puesto que el proceso dominante se destaca por la deformación plástica, la formación de grietas y la generación de capa tribológicas y su desprendimiento durante el desplazamiento (Suh N. P., 1986), como lo evidencia, por ejemplo, las microfotografías correspondientes a los experimentos 3, 4, 7, 9 de las figuras 4.11-12, 4.13-14, 4.19-20 y 4.23-24, respectivamente. En particular, en la microfotografía de la posición 2 del experimento 3a y 5a, reproducidas en figura 4.6, se puede apreciar agrietamiento (figura 4.6a) y deformación plástica severa (figura 4.6b) estimándose un mecanismo de desgaste por delaminación a alta velocidad, que con el valor de coeficiente de desgaste de 0,254 a 0,333 x 10⁻¹² m²/N esta concordancia con lo mostrado en los mapas de desgaste desarrollados por Ashby y Lim (Ashby & Lim, 1990).

72

Figura 4. 6. Detalle huella de desgaste del SAF 2507 (a) agrietamiento y (b) deformación plástica

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 7. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 1a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 8. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 1b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 9. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 2a. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 10. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 2b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 11. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 3a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.constructiones descrittiones desc

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 12. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 3b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 13. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 4a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 14. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 4b. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 15. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 5a. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 16. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 5b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 17. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 6a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.constructiones descrittiones desc

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 18. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 6b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 19. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 7a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 20. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 7b. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 21. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 8a. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 22. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 8b. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1(b) Pos.2(c) Pos.3(d) Pos.4Figura 4. 23. Micrografías obtenidas por microscopía óptica a 200x de la huella de
desgaste correspondiente al experimento 9a. Las imágenes fueron tomadas en
cuatro posiciones separadas 90° una de la otra.

(a) Pos.1 (b) Pos.2 (c) Pos.3 (d) Pos.4 Figura 4. 24. Micrografías obtenidas por microscopía óptica a 200x de la huella de desgaste correspondiente al experimento 9b. Las imágenes fueron tomadas en cuatro posiciones separadas 90° una de la otra.

4.4. Comportamiento ante el desgaste por frotamiento

A continuación se presenta los resultados de las pruebas realizadas en el tribómetro de simulación del frotamiento de acuerdo a la metodología presentada en el capítulo 3.

4.4.1 Datos del volumen y coeficiente de desgaste en tribómetro bola sobre plano

La tabla 4.11 lista los resultados experimentales de la evaluación del comportamiento de desgaste por frotamiento del acero dúplex SAF 2507- para las condiciones de operación propuestas en las pruebas diseñadas.

En la tabla 4.11 se reportan los datos para el diámetro de la huella, la profundidad de la huella, el volumen de desgaste y el coeficiente de desgaste, tanto de los experimentos realizados según el diseño DET, correspondiente a las pruebas del 1 al 4, como los experimentos adicionales, correspondientes a las pruebas 5 y 6. Todos los experimentos se muestran con dos repeticiones, señalados con los sub índices a y b.

En las figuras 4.25 a 4.27, se muestra el comportamiento del volumen de desgaste como una función de los ciclos de duración, la carga y la frecuencia del frotamiento, donde se puede observar la relación entre estos parámetros.

79

En la figura 4.28, se muestra el comportamiento del coeficiente de desgaste como una función de los ciclos de duración del frotamiento, donde se observa la relación de esta variable para cada frecuencia y carga probada.

En la figura 4.29, se muestra la determinación grafica del coeficiente de desgaste como una relación de proporción lineal entre el volumen de desgaste y el producto de la carga por el desplazamiento.

Tabla 4. 11.

Resumen de resultados experimentales del comportamiento de desgaste por
frotamiento del acero dúplex SAF 2507 para una amplitud de 100 μm y demás
condiciones de operación que se especifican en tribómetro de bola sobre plano

Experimento	Carga	Frecuencia	Ciclos	Diámetro	Profundidad	Volumen	Coeficiente
	[N]	[Hz]		Huella	Huella	Desgaste	Desgaste
				[µm]	[µm]	[mm³]	x10 ⁻⁹ [m²/N]
1a	10	10	10000	207,392	1,793	30,282	1,544
1b	10	10	10000	196,899	1,616	24,602	1,254
2a	10	30	100000	215,416	1,934	35,451	0,181
2b	10	30	100000	215,725	1,940	35,249	0,180
3a	70	10	100000	376,515	5,913	329,266	0,240
3b	70	10	100000	346,888	5,018	237,185	0,173
4a	70	30	10000	340,715	4,841	220,739	1,608
4b	70	30	10000	357,998	5,345	269,082	1,960
5a	70	30	100000	334,543	4,667	205,166	0,149
5b	70	30	100000	352,443	5,180	252,756	0,184
6a	70	30	500000	360,467	5,419	276,587	0,040
6b	70	30	500000	349,357	5,090	244,014	0,036

Figura 4. 25. Volumen de desgaste por frotamiento para el acero dúplex SAF 2507 como función del ciclo de duración en tribómetro bola sobre plano

Figura 4. 26. Volumen de desgaste por frotamiento para el acero dúplex SAF 2507 como función de la carga normal en tribómetro bola sobre plano

Figura 4. 27. Volumen de desgaste por frotamiento para el acero dúplex SAF 2507 como función del clico de la frecuencia en tribómetro bola sobre plano

4.4.2 Efecto de los parámetros variados en el desgaste por frotamiento en tribómetro bola sobre plano

Como se indicó en el capítulo 2, sección 2.2.5, el fenómeno de frotamiento es influenciado por numerosos parámetros. En esta sección se discuten los efectos de la variación del ciclo de duración, la carga aplicada y la frecuencia de oscilación.

Efecto del ciclo de duración sobre el volumen de desgaste

De los datos la tabla 4.11 y de la figura 4.25, se interpreta el efecto de los ciclos de duración sobre el volumen de desgaste. Se observa que el volumen de desgaste incrementa con el incremento de los ciclos de duración del frotamiento en las condiciones de operación evaluadas, esta proporcionalidad en la descrita por la ecuación 3.4, de la sección 3.8.1 del capítulo 3. En particular, para las condiciones de carga de 70 N y la frecuencia de 30 Hz, en el intervalo de 10⁴ a 5x10⁵ ciclos, el 82

volumen de desgaste es aproximadamente proporcional al número de ciclos. Al realizar un análisis de tendencia, se asume que un patrón exponencial, es el que mejor ajusta a los datos. Este tipo de proporcionalidad, conduce a estimar que la tasa de desgaste instantáneo es inversamente proporcional al tiempo acumulado.

Efecto de la carga sobre el volumen de desgaste

De los datos de la tabla 4.11 y de la figura 4.26, deduce el efecto de la carga sobre el volumen de desgaste. Se aprecia que el volumen de desgaste incrementa con el incremento de la carga normal en las condiciones de operación evaluadas, esta proporcionalidad valida la ecuación 3.4, de la sección 3.8.1 del capítulo 3. Este comportamiento supone la generación de más desechos de desgaste en el área de contacto por frotamiento.

Efecto de la frecuencia sobre el volumen de desgaste

De los datos la tabla 4.11 y de la figura 4.27, infiere el volumen de desgaste calculado como una función de la frecuencia de oscilación. Se aprecia que para un rango bajo de carga, el volumen de desgaste se mantiene aproximadamente constante para los cambios de frecuencia, sin embargo, para un rango alto de carga volumen de desgaste decrece con el incremento de la frecuencia de oscilación. Este comportamiento puede deberse la velocidad de expulsión de los desechos, que tiende a disminuir por la alta velocidad del desplazamiento.

Efecto del ciclo de duración sobre el coeficiente de desgaste

Los efectos discutidos del comportamiento proporcional del volumen respecto a la variación de la carga normal y los ciclos de duración, ratifican la validez de la utilización de la ecuación la ecuación 3.4, de la sección 3.8.1 del capítulo 3, para determinar el coeficiente de desgaste por frotamiento. Los valores obtenidos para las condiciones evaluadas están disponibles en la de la tabla 4.11. De la figura 4.28, se desprende el efecto de los ciclos de duración sobre el coeficiente de desgaste. Se observa que el coeficiente de desgaste decrece con el incremento de los ciclos de duración del frotamiento en las condiciones de operación evaluadas, tal como describe la ecuación 3.4, de la sección 3.8.1 del capítulo 3. Por ejemplo, para las condiciones de carga de 70 N y la frecuencia de 30 Hz, en el intervalo de 10^4 a $5x10^5$ ciclos, el coeficiente de desgaste es inversamente proporcional al número de ciclos. Al realizar un análisis de tendencia, se tiene que un patrón potencial, es el mejor ajuste a los datos, lo cual induce optimizar el modelo Archard en el parámetro de duración en una potencia de 0,987 para la condición de frotamiento. Para las condiciones evaluadas, los valores del coeficiente de desgaste se sitúan en el intervalo de 0,036 x 10^{-9} m²/N hasta 1,96 x 10^{-9} m²/N. En el caso específico, con las condiciones de carga de 70 N, la frecuencia de 30 Hz y en el intervalo de 10^4 a $5x10^5$ ciclos, empleando el método grafico de proporcionalidad lineal (figura 4.11) del volumen versus desplazamiento por carga, se obtiene un valor de coeficiente de desgaste de 0,0033 mm³/mN (3,3 x 10^{-12} m²/N).

Figura 4. 28. Coeficiente de desgaste por frotamiento para el acero dúplex SAF 2507 como función del clico de duración en tribómetro bola sobre plano

Figura 4. 29. Determinación del coeficiente de desgaste por razón de proporcionalidad lineal para el acero dúplex SAF 2507 en tribómetro bola sobre plano

4.4.3 Análisis estadístico de datos de desgaste por frotamiento en tribómetro bola sobre plano

El DET permite el análisis de la dispersión de los datos recolectados mediante la determinación de la relación señal a ruido, o número S/N (Roy R. K., 2010), y así determinar cuál de los parámetros variados ejerce su mayor influencia. Los detalles del cálculo de número S/N para las observaciones realizadas del volumen de desgaste por frotamiento, se disponen a continuación.

En la tabla 4.12 se resumen la matriz ortogonal con los datos para el volumen de desgaste de caso estudiado. En este arreglo se describe los resultados de los experimentos, ejecutados en dos réplicas, cada uno considerados para el comportamiento del volumen desgastado por frotamiento.

Seguidamente, se muestra el cálculo del S/N para el primer experimento en la matriz mostrada en la tabla 4.12, similar procedimiento se empleó para el resto de pruebas.

$$S_{m1} = \frac{(30,282+24,402)^2}{2} = 1506,1$$

$$S_{T1} = (30,282^2 + 24,402^2) = 1522,3$$

$$S_{e1} = S_{T1} - S_{m1} = 1522,3 - 1506,1 = 16,1$$

$$V_{e1} = \frac{S_{e1}}{N-1} = \frac{16,1}{1} = 16,1$$

$$SN_1 = 10\log\frac{(1/N)(S_{m1} - V_{e1})}{V_{e1}} = \frac{(1/2)(1506,1 - 16,1)}{16,1} = 16,6$$

En la tabla 4.13 se señala la relación S/N del volumen de desgaste para cada experimento.

Los datos de la tabla 4.14 es la respuesta S/N de cada parámetro. Esta tabla se creó mediante el cálculo de un valor promedio de S/N para cada factor. Seguidamente, se indica un cálculo de muestra para el parámetro B (frecuencia), lo otros se obtienen de forma similar:

$$S/N_{B1} = \frac{(16,6+12,7)}{2} = 14,649$$

 $S/N_{B3} = \frac{(47,9+17,1)}{2} = 32,457$

El efecto de este factor es calculado determinado el rango. Se indica un cálculo de muestra para el parámetro A (carga), lo otros se obtienen de forma similar.

 $\Delta = Max - Min = 32,457 - 14,649 = 17,808$
En resumen, los valores S/N para el volumen de desgaste obtenido para cada experimento de la tabla 4.11, se encuentran en la tabla 4.12. En la tabla 4.14 se muestra la respuesta de la relación S/N para el volumen de desgaste basado en la tabla 4.12, resultando de su análisis que la frecuencia es el parámetro que tiene el mayor efecto sobre el volumen de desgaste y el ciclo de duración el parámetro que tiene el menor efecto en el volumen de desgaste.

Experimento	Carga	Frecuencia	Ciclo	Prueba 1	Prueba 2	Promedio	Desviación
	[N]	[Hz]					
1	10	10	10000	30,2821	24,6022	27,4	4,0
2	10	30	100000	35,2490	35,4514	35,4	0,1
3	70	10	100000	329,2657	237,1853	283,2	65,1
4	70	30	10000	220,7387	269,0820	244,9	34,2

Tabla 4. 12. *Matriz ortogonal y resultados del comportamiento del volumen desgastado en frotamiento*

Tabla 4. 13.

Relación S/N del volumen desgastado en frotamiento en tribómetro bola sobre plano

Experimento	Carga	Frecuencia	Ciclo	S _m	S _T	S _e	V _e	S/N
1	10	10	10000	1506,1	1522,3	16,1	16,1	16,6
2	10	30	100000	2499,3	2499,3	0,0	0,02	47,9
3	70	10	100000	160433,3	164672,7	4239,4	4239,4	12,7
4	70	30	10000	119962,2	121130,7	1168,5	1168,5	17,1

Tabla 4. 14.

Respuesta S/N del volumen desgastado en frotamiento en tribómetro bola sobre plano

Nivel	Carga	Frecuencia	Ciclo

Ponderación	2	17,80851	3
٨	17 20227	17 00021	12 40041
2	14,85725	32,45755	30,25360
1	32,24953	14,64923	16,85318

Adicionalmente, de la tabla 4.14 se desprende que los niveles óptimos de los parámetros evaluados, que orientan a inferir que un mínimo volumen de desgaste y por consiguiente, un menor coeficiente de desgaste, puede obtenerse con la combinación de carga normal de contacto de 10N, una frecuencia de oscilación de 30 Hz y duración de 10⁵ ciclos. El ensayo 2 ya probó estas condiciones y produjo el resultado más bajo (ver el resultado promedio en la tabla 4.11).

4.4.4. Observaciones mediante microscopia óptica y electrónica de Barrido del desgaste por frotamiento en tribómetro bola sobre plano

En esta sección se presentan los resultados y la evaluación de la huella tanto las realizadas en el microscopio óptico (MO) como las logradas en microscopio electrónico de barrido (MEB), y así proceder a identificar el régimen y el mecanismo de desgaste por frotamiento.

En las figuras 4.30 a 4.39 se muestran las microfotografías de las huellas de desgaste obtenidas en cada prueba, en una imagen general realizadas mediante MO a una magnificación de 100x, y las obtenidas mediante MEB en magnificaciones de 200x, 300x y 500x y detalles de las huellas obtenidas en MO a magnificaciones de 400x y 1000x, y MEB, a magnificaciones de 1500x, 3000x y 6000x, junto con la gráfica de EDX de los puntos de pruebas seleccionadas. La flecha en el MO indica el sentido del frotamiento. La

nomenclatura alfanumérica que identifica cada imagen coincide con los renglones del experimento correspondiente presentado en la tabla 4.12.

En las figuras 4.30 y 4.31 se muestran las imágenes MO y MEB obtenidas a carga normal de 10 N, una frecuencia a 10 Hz por 10⁴ ciclos de duración, observándose una marca (huella) de deslizamiento con poco dañó superficial.

En las figuras 4.32 y 4.33 se muestran las imágenes MO y MEB obtenidas a carga normal de 10 N, una frecuencia a 30 Hz por 10⁵ ciclos de duración, con una marca de forma de anular (anillo), apreciándose una zona interna sin deslizamiento y otra externa con deslizamiento y daño al material.

En las figuras 4.34 y 4.35 se muestran las imágenes MO y MEB obtenidas a carga normal de 70 N, una frecuencia a 10 Hz por 10⁵ ciclos de duración, observándose una marca de deslizamiento con poco dañó superficial.

En las figuras 4.36 se muestran las imágenes MO obtenidas a carga normal de 70 N, una frecuencia a 30 Hz por 10⁴ ciclos de duración, observándose una marca de deslizamiento con poco dañó superficial.

En las figuras 4.37 se muestran las imágenes MO obtenidas a carga normal de 70 N, una frecuencia a 30 Hz por 10⁵ ciclos de duración, observándose una marca de deslizamiento con huellas de rayado.

En las figuras 4.38 y 4.39 se muestran las imágenes MO y MEB obtenidas a carga normal de 70 N, una frecuencia a 30 Hz por 5x10⁵ ciclos de duración, observándose una amplia marca de deslizamiento con huellas de rayado y una incipiente zona anular.

Régimen del desgaste por Frotamiento

Se ha referido la importancia de identificar el régimen de frotamiento antes de intentar explicar el comportamiento del material y tratar de clasificar el material (Stachowiak, 2005), iguales pasos se empleó en este estudio para el análisis del desgaste por frotamiento del acero dúplex SAF 2507.

Primeramente, un análisis general de la evolución del daño, que se evidencian por las microfotografías obtenidas por MO y ME, presentadas en las figuras 4.30 a 4.39, para los distintos niveles de los de parámetros evaluados, indica que la condición de frotamiento se expone como de deslizamiento parcial, al estar caracterizado por zonas de contacto de deslizamiento, así como, por zonas de atascamiento (como se reseñó en sección 2.2.5, descrita en la figura 2.5). Estas zonas se pueden apreciar de manera particular en la imagen (a) de las figuras 4.32 y la imagen (d) de la figura 4.35.

Lo anterior descrito, permite inferir la existencia de un Régimen Mixto de Frotamiento (MFR) para las condiciones evaluadas de la amplitud de desplazamiento de 100 μ m, la frecuencia de 30Hz y tanto a carga normal aplicada de 10 N y 70 N, al completar un duración superior a 10⁵ ciclos. Los datos obtenidos permiten suponer la respuesta del material por frotamiento (MRFM) como una mezcla de desgaste inducido por la formación de desechos y agrietamiento (como se señaló la sección 2.2.5 mediante la figura 2.6).

En la figura 4.30b-f se observa las imágenes del detalle en el centro y borde de la huella mostrada en la imagen 4.30a. En el centro (imágenes b, c y d) aparecen agrietamientos y posibles incrustaciones, que fueron analizadas mediante EDX (puntos 1 y 2, en imagen d). El EDX (punto 2 en imagen d), señala una caracterización típica del material, además, de presencia de óxidos (evidenciada por traza del oxígeno), posiblemente ferrosos o silicatos.

90

En el borde (imágenes e y f) se aprecia rayadura, pudiendo indicar el flujo de desechos o partículas de mayor dureza que el material base.

En la figura 4.31c-d se observa las imágenes del detalle en el borde de la huella mostrada la imagen (a) de la figura 4.31. En el borde (imágenes c y d) se aprecia desprendimiento de material y leves agrietamientos en el mismo, indicando el flujo de desechos. El EDX (puntos 1 y 2, en imagen e), señala una caracterización típica del material.

En la figura 4.32c-g se observa la imagen del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.32. En el centro (imágenes c, d y e) aparecen agrietamientos que pueden relacionar al efecto de la carga concentrada en esta zona de atascamiento (no hay deslizamiento). En el borde (imágenes f y g) se aprecia desprendimiento de material, ocasionado por el deslizamiento en esta zona donde flujo de desechos es completo fuera del contacto.

En la figura 4.33c-g se observa las imágenes del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.33. En el centro (imágenes c y d) aparecen agrietamientos que pueden relacionar al efecto de la carga concentrada en esta zona de atascamiento. En el borde (imágenes e y f) se aprecia desprendimiento de material, ocasionado por el deslizamiento en esta zona donde flujo de desechos es completo fuera del contacto. Adicionalmente, se aprecia grietas, que fueron sometidas a análisis EDX (puntos 1, 2 y 4, en imagen e). El EDX (punto 4 en imagen e), señala un caracterización típica del material, además de presencia de óxidos (evidenciada por traza del oxígeno, mostrado en la gráfica del punto 4), posiblemente de proveniente de especies ferrosas o silicatos.

En la figura 4.34c-g se observa la imagen del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.34. Tanto, en el centro 91 (imágenes c, d y e) como en el borde (imágenes f y g) se aprecia huellas de rayadura, pudiendo indicar el flujo de desechos o partículas de mayor dureza que el material base. Estas partículas pueden estar relacionadas con incrustaciones o impureza del material originadas en el proceso de manufactura o óxidos propios de la naturaleza de un acero inoxidable.

En la figura 4.35c-f se observa las imágenes del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.35. Tanto, en el centro (imágenes c y d) como en el borde (imágenes e y f) se aprecia huellas de rayadura. El EDX (punto 1 en imagen d), señala una caracterización típica del material.

En la figura 4.38c-e se observa las imágenes del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.38. En el centro (imágenes c y d) aparecen rayaduras que pueden relacionarse un flujo o desplazamiento interno de desechos de material, en esta zona de atascamiento. En el borde (imagen e) se aprecia la iniciación del desprendimiento de material, ocasionado por el deslizamiento en esta zona de forma de anillo, donde flujo de desechos es completo fuera del contacto.

En la figura 4.39c-g se observa la imagen del detalle en el centro y borde de la huella mostrada en la imagen (a) de la figura 4.39. En el centro (imágenes c, d y e) aparecen rayaduras que pueden relacionarse un flujo o desplazamiento interno de desechos de material, en esta zona de atascamiento. En el borde (imagen f y g) aparecen indicios de rayadura por flujo de material, relacionándose con un desplazamiento externo de los desechos.

Figura 4. 30. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μ m, una carga normal 10 N, una frecuencia de 10 Hz y 10⁴ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella de desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 10 N, una frecuencia de 10 Hz y 10⁴ ciclos de duración

Figura 4. 31. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μm, una carga normal 10 N, una frecuencia de 10 Hz y 10⁴ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella de desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 10 N, una frecuencia de 10 Hz y 10⁴ ciclos de duración

Figura 4. 32. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por

frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μm, una carga normal 10 N, una frecuencia de 30 Hz y 10⁵ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella de desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 10 N, una frecuencia de 30 Hz y 10⁵ ciclos de duración

Figura 4. 33. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 µm, una carga normal 10 N, una frecuencia de 30 Hz y 105 ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella de desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 10 N, una frecuencia de 30 Hz y 105 ciclos de duración

(f) 3a borde, 400x

(g) 3a borde, 1500x

Figura 4. 34. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μ m y una carga normal 70 N, una frecuencia de 10 Hz y 10⁵ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella del desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 70 N, una frecuencia de 10 Hz y 10⁵ ciclos de duración

Figura 4. 35. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μ m y una carga normal 70 N, una frecuencia de 10 Hz y 10⁵ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella del desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 70 N, una frecuencia de 10 Hz y 10⁵ ciclos de duración

Figura 4. 36. Imágenes digitales obtenidas mediante MO, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μm y una carga normal 70 N, una frecuencia de 30 Hz y 10⁴ ciclos de duración, a la magnificación según se indica

Figura 4. 37. Imágenes digitales obtenidas mediante MO, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μm y una carga normal 70 N, una frecuencia de 30 Hz y 10⁵ ciclos de duración, a la magnificación según se indica

Figura 4. 38. Imágenes digitales obtenidas mediante MO y MEB, del desgaste por frotamiento para el acero dúplex SAF 2507 para una amplitud de 100 μ m y una carga normal 70 N, una frecuencia de 30 Hz y 5x10⁵ ciclos de duración, a la magnificación según se indica. Imágenes MO y MEB de detalles en el centro y borde de la huella del desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 70 N, una frecuencia de 30 Hz y 5x10⁵ ciclos de duración

Figura 4. 39. Imágenes MO y MEB de detalles en el centro y borde de la huella del desgaste por frotamiento del acero dúplex SAF 2507 para la condición carga normal de 70 N, una frecuencia de 30 Hz y 5x105 ciclos de duración

Para la carga normal de 10 N a frecuencia de 10 Hz por 10⁴ ciclos de duración, se observa adhesión como se aprecia en las imágenes de la figura 4.31, mientras a la frecuencia de 30 Hz por 10⁵ ciclos de duración, se evidencias deformación cíclica repetitiva, debido a la presencia de picaduras y grietas, según se nota en las imágenes de la figura 4.32 y 4.33. Por la acción de la carga normal de 70 N, tanto a 10 Hz como a 30 Hz, por 10^4 ciclos y 10^5 ciclos, se observa adhesión, por ejemplo en las imágenes de la figura 4.34 y la figura 4.35, mientras 5x10⁵ ciclos se aprecia el comienzo de la deformación cíclica repetitiva (ver la figura 4.38). Además, se identifica un mecanismo de desgaste por deformación cíclica simple (semejante a la abrasión), posiblemente por la presencia de incrustaciones de óxidos en el acero dúplex estudiado, que se demuestran en el análisis de EDX por la presencia de oxígeno, como por ejemplo, en el punto 2 del EDX que se muestra en (d) de la figura 4.30; punto 1 en (e) de la figura 4.31, y los puntos 1, 2, y 4, en (g) de la figura 4.33. En la tabla 4.34 se muestran los valores cuantitativos del análisis EDX de los puntos antes referidos. Estos óxidos pueden actuar como abrasivos, acelerando el desgaste, como se evidencia en las imágenes de la figura 4.39.

Cabe destacar la observación efectuadas a las imágenes a y b de la figura 4.40, tanto por MO y ME, de las pruebas realizadas con carga normal de 70 N, a frecuencia de 10 Hz y a una duración de 10⁵ ciclos. Estas imágenes presentan una mancha (también observable en imagen b de la figura 4.35) de coloración muy diferente al material base. La presencia de manchas de coloración distintiva pudiera suponer una la elevación de la temperatura de contacto como consecuencia del esfuerzo concentrado a baja frecuencia de oscilación, según lo señalado en el capítulo 2, sección 2.2.5. El EDX (punto 1), sólo señala una caracterización típica del material. En la tabla 4.16, se presentan los valores cuantitativos, tanto en porcentaje en peso como porcentaje atómico, del análisis EDX de la huellas en los puntos de las pruebas seleccionadas que se indican en la misma. En general, estos valores confirman la caracterización típica en Cr, Ni, Mo, que representa al acero inoxidable dúplex, como se señaló en la sección 4.1. En particular, se observa una presencia de Si, algo mayor de la reportada en el certificado de inspección (ver anexo A) y un alto valor en el punto 2 de la prueba P1A, asociado con la existencia de oxígeno, haciendo relevante la presencia de óxido derivado de estas especies. Adicionalmente, se destaca la elevada presencia de Mg, Al, S, Ca en el punto 1 de la evaluación realizada a la prueba P1B, que puede relacionarse con unas impurezas provenientes de la poca calidad del proceso de manufactura.

Figura 4. 40. Imágenes MO y MEB de detalles de marca de elevación de temperatura de la huella del desgaste por frotamiento del acero dúplex SAF 2507 para una amplitud de 100 μ m, una carga normal 70 N, una frecuencia de 10 Hz y 10⁵ ciclos de duración

5. Conclusiones

En esta investigación, se determinó el comportamiento tribológico del acero inoxidable austenítico ferrítico en deslizamiento unidireccional y oscilante sin lubricante en condiciones de carga, velocidad o frecuencia, y duración típicas en los implantes y las prótesis de extremidades inferiores en condición de marcha, con la finalidad de aportar, de manera preliminar, información que conlleve a la selección del acero inoxidable súper dúplex como material para aplicaciones de bioingeniería, cuando se considera el criterio de durabilidad.

Se determinó que el coeficiente de fricción obtenido en el ensayo ASTM G77 (modificado bola sobre anillo), es similar al logrado en el acero austenítico, normalmente empleado como acero quirúrgico.

Respecto al coeficiente de desgaste, en el ensayo ASTM G77 modificado, resultó ser menor que el obtenido por otros investigadores en ensayos espiga sobre disco (ASTM G 99) el acero austenítico en similares condiciones. Este comportamiento ante el desgaste y a la fricción unidireccional, indica que el acero súper dúplex es un sustituto apropiado del acero austenítico para aplicaciones ortopédicas donde se requiere durabilidad de los componentes en contacto. Los mecanismos de desgaste en seco se obtuvieron comparables en aceros inoxidables dúplex logrados por otros investigadores.

Del ensayo ASTM 133 (deslizamiento oscilante), se obtuvo que el acero inoxidable súper dúplex reporta coeficiente de desgaste, régimen y mecanismos de desgaste razonables para la condición de frotamiento evaluada, sugiriendo que el acero súper dúplex es un potencial reemplazo del acero austenítico, generalmente usado para aplicaciones osteosíntesis.

Esta investigación ha logrado disponer de los datos del comportamiento de fricción y desgaste que permite optimizar en tiempo y costo la selección de los

factores y niveles de los tratamientos para los ensayos en tribómetro, que permitirá la continuidad de la evaluación de este material, para su propuesta como alternativa de los aceros quirúrgicos generalmente empleados en aplicaciones ortopédicas y de osteosíntesis.

De los estudios llevados a cabo se extraen las siguientes observaciones clave.

Para el comportamiento tribológico ante el deslizamiento en seco:

- El acero SAF 2507 se obtuvo un coeficiente de fricción promedio en el intervalo de 0,213 a 0,891 para las condiciones evaluadas.
- El coeficiente de fricción es menor a medida que la carga normal aplicada es mayor a razón de un 29,05 %, así mismo este disminuye al aumentar la velocidad de deslizamiento en una proporción de 39,33 % en promedio.
- Todos los parámetros resultaron ser estadísticamente significativos e independientes unos de otros, así como sus interacciones, con un nivel de significación de 95%.
- La duración resultó ser el parámetro más influyente y la carga normal, es el de menor influencia en la caracterización del coeficiente de fricción para el acero inoxidable austenítico-ferrítico estudiado.
- Para optimizar con eficacia la respuesta a la fricción por deslizamiento se selecciona una carga normal de 29 N, una velocidad de deslizamiento de 2 m/s y una distancia de 500 m.
- La distancia de deslizamiento es el parámetro que tiene el mayor efecto sobre el volumen de desgaste y la carga normal el parámetro que tiene el menor efecto en el volumen de desgaste.
- El acero SAF 2507 se logró valores del coeficiente de desgaste promedio en el intervalo de 0,19588 x 10⁻¹² m²/N hasta 0,72381 x 10⁻¹² m²/N.
- El mecanismo de desgaste identificado para el SAF 2507 es de adhesión y deliminación de alta velocidad.

Para el comportamiento tribológico ante el frotamiento:

- Los valores del coeficiente de desgaste, se reportan en el intervalo desde 0,036 x 10⁻⁹ m²/N hasta 1,96 x 10⁻⁹ m²/N, para las condiciones evaluadas.
- Un menor coeficiente de desgaste, puede obtenerse con la combinación de carga normal de contacto de 70N, una frecuencia de oscilación de 10 Hz y duración de 10⁴ ciclos.
- Se optimiza el modelo Archard en la variable de ciclos de duración en una potencia de 0,987 para la condición de frotamiento.
- La variación de la frecuencia de oscilación es factor que tiene el mayor efecto sobre el volumen de desgaste y la variación del ciclo de duración, es que tiene el menor efecto sobre el volumen de desgaste.
- El régimen de frotamiento ensayado se identificó como mixto.
- Los desechos de desgaste se generan por mecanismos de adhesión, deformación cíclica simple y deformación cíclica repetida. La presencia de óxido puede acelerar estos mecanismos.
- Las pruebas realizadas con carga normal de 70 N, a frecuencia de 10 Hz y a una duración de 10⁵ ciclos, presentaron una elevada temperatura de contacto.

Trabajo a Futuro

En la búsqueda constante del conocimiento tecnológico y derivado del esfuerzo realizado en esta investigación, se desprende varias opciones de continuidad sobre el estudio del comportamiento tribológico del acero inoxidable dúplex evaluado, a las siguientes temáticas:

- Estudiar los efectos de la amplitud de oscilación, la temperatura, el ambiente, el tratamiento térmico y la microestructura, para la fricción y el desgaste por deslizamiento oscilante (frotamiento).
- Estudiar el efecto del ambiente (fluidos corporales), el par tribológico no metal
 metal (polímero acero) y los recubrimientos de superficie, en la fricción y desgaste por deslizamiento unidireccional.
- Investigar en otras aplicaciones del acero inoxidable súper dúplex donde se requiera la interacción de superficies en movimiento relativo, como por ejemplo en la parte dental (prótesis y ortodoncia) y en los elementos mecánicos de equipos rotativos en aplicaciones médicas, como en la bomba peristáltica usada en la diálisis.

La temática a desarrollar es amplia, pues como se comentó en la justificación, la tribología es una ciencia en desarrollo.

Referencias Bibliográficas

- Aherwar, A., Singh, A., & Patnaik, A. (2016). Study on mechanical and wear characterization of novel Co30Cr4Mo biomedical alloy with added nickel under dry and wet sliding conditions using Taguchi approach. *Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232*(7), 535–554.
- Archard, J. (1953). Contact and Rubbing of Flat Surface. *Journal of Applied Physics*, 24(8), 981 988.
- Ashby, M. F., & Lim, S. C. (1990). Wear-Mechanism Maps. *Scripta METALLURGICA et MATERIALIA*, 24, 805-810.
- ASM. (1992). ASM Handbook, Volume 18, Friction, Lubrication, and Wear Technology. (P. Blau, Ed.) Park, OH: ASM International.
- ASTM. (2000). ASTM F139-00 Standard Specification for Wrought 18 Chromium-14 Nickel 2.5 Molybdenum Stainless Steel Sheet and Strip for Surgical Implants (UNS S31673).
 In ASTM, Annual Book of ASTM Standards (Vol. 13.01). West Conshohokken, PA:
 ASTM International.
- ASTM. (2002). ASTM G133-02, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. In ASTM, *Wear and Erosion; Metal Corrosion* (Vol. 03.02). West Conshohocken, PA: ASTM International.
- ASTM. (2003). ASTM F138-97 Standard Specification for Wrought 18 Chromium-14 Nickel 2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). In
 ASTM, Annual Book of ASTM Standards (Vol. 13.01). West Conshohocken, PA: ASTM
 International.
- ASTM. (2004). ASTM A240 / A240M-04a Standard specification forchromium and chromium–nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. In ASTM, *Annual Book of ASTM Standards.* West Conshohokken, PA: ASTM International.
- ASTM. (2004). ASTM G99-04 Wear Testing with a Pin-on-Disk Apparatus. West Conshohocken, PA, United States: ASTM International.

- ASTM. (2004). ASTM Wear and Erosion; Metal Corrosion: ASTM G77-98 Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test (Vol. 03.02). West Conshohocken, PA: ASTM International.
- Bayer, R. (2004). Mechanical Wear Fundamentals and Testing. New York: Marcel Dekker.
- Beloti, M., J.M.D.A., R., Itman Filho, A., & L., R. (2004). In vitro biocompatibility of duplex stainless steel with and without 0.2% niobium. *Journal of Applied Biomaterials and Biomechanics*, *2*, 162-168.
- Cigada, A., Amaci, J., Cavallini, M., De Santis, G., Gatti, M., Giacomazzi, M., . . . Zaffe, D. (1990). Characterization of a high performance duplex stainless steel for orthopedic aplicattions. *Annual International Conference of the IEEE Engineering in Medicine and Biology Socety*, *12*(5), 2082-2084.
- Cigada, A., De Santis, G., Gatti, A., Roos, A., & Zaffe, D. (1993). In Vivo Behavior of a High Performance Duplex Stainless Steel. *Journal of Applied Biomaterials*, *4*, 39-46.
- Cigada, A., Rondelli, G., Vicentini, B., Giacomazzi, M., Cremascoli, G., & Roos, A. (1989). Duplex stainless steels for osteosynthesis devices. *Journal of Biomedical Materials Research, 23*, 1087-1095.
- Davanageri, M. B., Narendranath, S., & Kadoli, R. (2018). Finite Element Wear Behaviour Modeling of Super duplex stainless steel AISI 2507 Using Ansys. *IOP Conf. Ser.: Mater. Sci. Eng.*, 376.
- De Farias, C., Boschetti, H., Wolynec, S., & Padilha, A. (2017). An overview of the recurrent failures of duplex stainless steels. *Progress in Materials Science*, *88*, 232–280.
- DeCoursey, W. (2003). Statistics and Probability for Engineering Applications With Microsoft[®] Excel. Newnes.
- Fouvry, S., Kapsa, P., & Vincent, L. (2003). Global Methodology to Quantify Fretting Damages. In ASTM, Y. Mutoh, S. Kinyon, & D. Hoeppner (Eds.), Fretting Fatigue: Advances in Basic Understanding and Applications, ASTM STP 1425 (pp. 17-32). West Conshohocken, PA: ASTM International,.
- Glaeser, W. (1992). *Materials for tribology*. Amsterdam: Elsevier Science Publichers.
- Gloriet, C. (2012). *Desarrollo del sistema de medición y control de un tribometro tipo bloque en anillo*. Universidad de Carabobo. Valencia: Universidad de Carabobo.

- Gómez, L. (2009). *Estudio de biocompatibilidad del acero dúplex SAF 2205*. Departamento de Diseño Mecánico. Naguanagua: Universidad de Carabobo.
- Gregorutti, R. W., Grau, J. E., Sives, F., & Elsne, C. I. (2016). Mechanical, electrochemical and magnetic behaviour of duplex stainless steel for biomedical applications. *Materials Science and Technology*, 31(15), 1818-1824.
- Gutiérrez Pulido, H., & De la Vara Salazar, R. (2008). *Análisis y diseño de experimentos*. (2da ed.). Mexico: Mc Graw Hill.
- Hamrock, B., Jacobson, B., & Schmid, S. (2000). *Elementos de Máquinas*. Mexico: McGraw-Hill.
- Hernández, R., & Paiva, A. (2003). *Contrucción y puesta en marcha de una máquina para la simulación de fretting.* Caracas: Universidad Central de Venezuela.
- Hoeppner, D., & Chandrasekaran, V. (1994, Abril). Fretting in orthopaedic implants: A review. *Wear*, *173*(1-2), 189-197.
- Hussain, O., Saleem, S. S., & Ahmad, B. (2019). Friction and wear performance evaluation of UHMWPE using Taguchi based grey approach: A study on the influence of load and bio-serum lubrication. *239*, 121918.
- IMOA. (2012). *Directrices Práticas para la fabricación de los Aceros Dúplex*. Londres: International Molybdenum Association (IMOA).
- ISO. (1997). ISO 5832-1:1997 . Implants for surgery -- Metallic materials -- Part 1: Wrought stainless steel. Geneva, Switzerland: International Organization for Standardization.
- Kadjas, C., Harvey, S., & Wilusz, E. (1990). *Encyclopedia of Tribology*. New York: Elsevier Science Publishers B.V.
- Kapsa, P., Fouvry, S., & Vincent, L. (2005). Basic Principles of Fretting. In G. Stachowiak, Wear – Materials, Mechanisms and Practice (pp. 317-338). England: John Wiley & Sons Ltd.
- Kunčická, L., Kocich, R., & Lowe, T. C. (2017). Advances in metals and alloys for joint replacement. *Progress in Materials Science*, *88*, 232–280.
- Magaziner, R., Jain, V., & Mall, S. (2008). Wear characterization of Ti–6Al–4V under fretting– reciprocating sliding conditions. *Wear*, *264*, 1002–1014.

113

- Magee, J. (1992). Wear of Stainless Steels. In ASM, ASM Handbook, Volume 18, Friction, Lubrication, and Wear Technology (pp. 1444-1479). Park, OH: ASM International.
- McGloughlin, T., & Kavanagh, A. (2000). Wear of ultra-high molecular weight polyethylene (UHMWPE) in total knee prostheses: a review of key influences. *Proc Instn Mech Engrs Vol 214 Part H: J. Engineering in Medicine, 214*, 349-359.
- Medina, L., & Peralta, G. (2010). Evaluación de las propiedades tribologicas del Acero Dúplex. Universidad de Carabobo, Escuela de Ingenieria Mecánica. Naguanagua: Universidad de Carabobo.
- Mestra, A., Fargas, G., Anglada, M., & Mateo, A. (2010). Sliding wear behavior of a duplex stainless steel. *Key Engineering Materials, 423*, 125-130.
- Myant, C., & Cann, P. (2014). On thematterofsynovial fluid lubrication: Implications for Metal-on-Metal hip tribology. *Journal of the mechanical behavior of biomedical materials*, *34*, 338–348.
- NIH. (2010). *ImageJ*. Retrieved Enero 10, 2012, from National Institute of Mental Health (NIMH): http://rsbweb.nih.gov
- Norton, R. (2011). *Diseño de Máquinas: Un enfoque integrado* (Cuarta ed.). Mexico: Pearson Educación.
- Rabinowicz, E. (1965). Friction and Wear of Materials. New York: Jonh Wiley & Sons.
- Renedo, J. (2010, Febrero). *Comportamiento al desgaste por deslizamiento en aceros inoxidables: ferrítico,.* Retrieved Octubre 12, 2010, from Treballs academics UPC: http://upcommons.upc.edu/pfc/handle/2099.1/9210
- Renedo, J. (2010). *Comportamiento al desgaste por deslizamiento en aceros inoxidables: ferrítico, austenítico, dúplex y martensítico*. Catalunya: Treballs academics UPC.
- Rodríguez, R., Garcia, L., Vite, M., Merchán, E., & Sandoval, J. (2010). Análisis experimental del desgaste entre UHMWPE y acero inoxidable 316l empleados en la manufactura de prótesis coxofemorales. *Rev. Colombiana Biotecnologia, XII*(2), 67-85.
- Rodriguez, R., Urriolagoitia Sosa, G., Torres, C., Hernandez, L., & Urriolagoitia Calderon, G. (2013). Análisis numérico sobre esfuerzos y áreas de contacto en una PTR Scorpio II.
 Base para el diseño de PTR personaliza al fenotipo mexicano . *Rev. Colomb. Biotecnol. Vol. XV No. 1*, 28-41.

- Roy, R. K. (2010). *A primer on the Taguchi method* (2th ed.). Dearborn: Society of Manufacturing Engineers.
- Ruff, A. (1992). Wear Measurement. In ASM, ASM Handbook, Volume 18, Friction, Lubrication, and Wear Technology (pp. 675-691). Park, OH: ASM International.
- Sreenivas Rao, R., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. *Biotechnol. J.*(3), 510–523.
- Stachowiak, G. (2005). Wear materials, mechanisms and practice. England: Wiley.
- Straffelini, G. (2002). Sliding Wear of Austenitic and Austenitic-Ferritic Stainless Steels. *Metallurgical and Materials Transactons A, 33A,* 613-624.
- Suh, N. (1973). The De lamination Theory of Wear. Wear, 25, 111-124.
- Suh, N. P. (1986). *Tribophysis*. New Jersy: Prentice-Hall.
- Suh, N., & Sin, H. (1983). On prediction of Wear Coefficients. *Transactions of A.S.L.E., 26*, 360-366.
- Szyndelman, G. (2008, Febrero). *Comportamiento tribológico del acero inoxidable dúplex* 2205. Catalunya: Treballs academics UPC. Retrieved Noviembre 18, 2009, from Treballs academics UPC: http://upcommons.upc.edu/pfc/handle/2099.1/4792
- Turkintong, K. (1980). *Diseño y fabricación de una máquina de ensayo de roce*. Universidad de Carabobo. Valencia: Universidad de Carabobo.
- Vaughan, C. L., Davis L, B., & O'Connor, J. C. (1999). *Dynamics of Human Gait* (2nd ed.). Cape Town, South Africa: Kiboho Publishers.
- Wang, M., Wang, Y., Liu, H., & Yan, F. (2019). Effect of load on the fretting behavior of SAF 2507 super duplex stainless steel in air and sea water. *Industrial Lubrication and Tribology*, *72*(5), 651-656.
- Wang, M., Wang, Y., Liu, H., Wang, J., & Yan, F. (2019). Interrelated effects of temperature and load on fretting behavior of SAF 2507 super duplex stainless steel. *Tribology International, 136*, 140-147.
- Wang, Y., Lei, T., & Liu, J. (1999). Tribo-metallographic behavior of high carbon steels in dry sliding: I. Wear mechanisms and their transition. *Wear*, *231*, 1-11.

Waterhouse, R. (1992). Fretting Wear. In ASM, ASM Handbook, Volume 18, Friction, Lubrication, and Wear Technology (pp. 449-481). Park, OH: ASM International.

Anexos

Anexo A. Certificado de Inspección de origen SAF 2507

https://www.extranet.steel.sandvik.com/Certificates/CertView/ShowUni...

	VIK			CERTIF	ICATE NO)ate 2006-03-2	3 Pag
INSPECTI SN 10 20	ON CERTIFICATE 4 3.1	acc to	SANVEN ST AVENIDA F TORRE LA CAMPO ALE VENEZUELA	EEL, C.A. RANCISCO I PRIMERA.PI GRE/CARACA	DE MIRANDA 180 4 OFC 4 AS 1060	14	
ustomer	References		Sandvik F	eferences			
MT-2006	-22-UC	Customer order 2006-03-22	Order No. ABSMT No.	Subs No. C.Code	ABSMT Dis 46757/53	spatch note	
610-0637	9 SANVEN		284-63430	72			
Material HOT WORK ANNEALED PEEL TUR	description ED STAINLESS B. & STRAIGHTENEI NED AND POLISHI	AR STEEL) ED	Steel/mat Sandvik SAF 2507 UNS S32750	erial Desi	ignations SS 2328 EN no 1.4410		
Electric Fechnica	furnace L requirements						
Electric Cechnica EN 10088 EXTENT OL It 011	furnace 1 requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MER-SAF2507-20	nation Hea 50'	at Lot 7366 92493	Pieces 5	Kg 55.0		
Electric Technica EN 10088 EXTENT OU It 01 1	furnace 1 requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200-	nation He 50'	at Lot 7366 92493 Total	Pieces 5	Kg 55.0		
Electric Fechnica EN 10088 EXTENT OU It 01 1 TEST RESS	furnace 1 requirements -3:-2005 F DELIVERY Product design MBR-SAF2507-20 MA-3200- JULTS	nation He 50'	at Lot 7366 92493 Total	Pieces 5 5	Kg 55.0 55.0		
Electric Technica EN 10088 EXTENT OU It 01 1 TEST RESI Chemical Heat	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- MLTS composition ()	ration He 50' We	at Lot 7366 92493 Total	Pieces 5 5	Кај 55.0 55.0	Ma	
Electric Technica EN 10088 EXTENT OU It Oli TEST RESI Chemical Heat 507366 507366	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- MLTS composition (1 C Si 0.014 0.33 Cu N 0.11 0.283	ration He 50" meight%) Mn 0.77 2	nt Lot 7366 92493 Total P 0.017 (Pieces 5 5 S (1.0006 25.	Ка 55.0 55.0 Ст Мі 15 6.9	i No 96 3.91	
Electric Technica EN 10088 EXTENT 00 It 01 1 TEST RESI Chemical Heat 507366 507366 Tensile	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- ULTS composition (1 C Si 0.014 0.33 Cu H 0.281 test at room to	nation He 50° meight%) Mn 0.77 2 amperature	at Lot 7366 92493 Total P 0.017 (Pieces 5 5 S (0006 25.	Кај 55.0 55.0 Ст Мај .15 6.9	i Mo 96 3.91	
Electric Fechnicai EN 10088 EXTENT 00 It 01: TEST RESI Chemical feat 507366 507366 Fensile	furnace l requirements -3:-2005 F DELIVERY Product design HER-SAF2507-20 MA-3200- MA-3200	ration He 50° meight%) Mn 0.77 2 mperature rength	nt Lot 7366 92493 Total P 0.017 (Censile str	Pieces 5 5 5 0.0006 25.	Kg 55.0 55.0 Cr Ni .15 6.9	i No 26 3.91 Red.of Are	a .
Electric Fechnica EN 10088 EXTENT OU It 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	furnace 1 requirements -3:-2005 F DELIVERY Product design MBR-SAF2507-20 MA-3200- ULTS composition (% C Si 0.014 0.33 Cu N 0.11 0.28: test at room to Yield st MPa MN Rp0.2 Rm	nation Head 50° meight%) Mn 0.77 2 semperature sempera	nt Lot 7366 92493 Total P 0.017 (Censile str Ma	Pieces 5 5 5 0006 25. ength E3 3	Kg 55.0 55.0 Cr Ni 15 6.9	k Mo 96 3.91 Red.of äre, 5	a
Electric Technica EN 10088 EXTENT OU It 011 TEST RESS Chemical Heat 507366 Tensile 1 Lot 92493	furnace 1 requirements -3:-2005 F DELIVERY Product design IMR-SAF2507-20 MA-3200- MA-3200	nation Head 50° meight%) Mn 0.77 2 semperature semperature sempth 7 2a 1 1.0 1 1.0 1	nt Lot 7366 92493 Total P 0.017 (Censile str Ma 367	Pieces 5 5 5 0006 25. ength E1 3 3	Kg 55.0 55.0 Cr Ni 15 6.9 Longation	k Mo 96 3.91 Red.of Are % Z 67	a
Electric Technica EN 10088 EXTENT 00 It 01 TEST RESI Chemical Heat 507366 507366 Tensile 2493 Hardness	furnace 1 requirements -3:-2005 F DELIVERY Product design MBR-SAF2507-20 MA-3200- ULTS composition (% C Si 0.014 0.33 Cu N 0.11 0.28; test at room ti Yield sti MPa Mi Rp0.2 Rj 629 7; test	nation He 50' meight%) Mn 0.77 2 amperature cength 7 2 a 1.0 1 37 1	at Lot 3366 92493 Total P 0.017 (Tensile str Wn 367	Pieces 5 5 5 0.0006 25. ength El 3 3	Kg 55.0 55.0 Cr Ni 15 6.9 Longation	No 96 3.91 Red.of Bre % 2 67	a
Electric Technica EN 10088 EXTENT 00 It 01 1 FEST RESI Chemical Heat 507366 507366 Tensile So7366 Tensile So7366 Tensile So7366 Tensile So7366	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- ULTS composition (1 C Si 0.014 0.33 Cu N 0.11 0.28: test at room t. MPA MI Rp0.2 Rg 629 71 test Min	nation He 50° weight%) Mn 0.77 2 smperature rength 7 7 8 1.0 1 7 7 8 8 8 7 7 8 8 8 9 7 7 8 8 8 9 7 7 8 8 9 7 8 9 7 8 8 9 7 9 7	nt Lot 7366 92493 Total P 0.017 (Censile str 47a 367	Pieces 5 5 S (0.0006 25. ength E3 A 3t	Kg 55.0 55.0 15 6.5 Longation	L Mo 6 3.91 Red.of are: % Z 67	a
Electric Technica EN 10088 EXTENT 00 1 1 TEST RESI Chemical Heat 507366 507366 Tensile 92493 Hardness Lot 92493	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- ULTS composition (1 C Si 0.014 0.33 Cu H 0.11 0.283 test at room to Xield sti MPA MM Rp0.2 Rg 629 71 test Min HRC 21.0	nation Headow 50° meight%) Mn 0.77 2 amperature rength 2 7 a 1.0 I 1.0 I 1.0 I 1.0 I 1.0 I 2.2.0	nt Lot 7366 92493 Total P 0.017 (Censile str Ma Sm 367	Pieces 5 5 S (0 0006 25. Pength El 3	Kg 55.0 55.0 Cr Ni .15 6.9 Longation	L Mo 6 3.91 Red.of are 5 Z 67	a
Electric Technica EN 10088 EXTENT 0 01 1 TEST RESI Chemical Heat 507366 507366 Tensile 1 22493 Hardness Lot 92493	furnace l requirements -3:-2005 F DELIVERY Product design MER-SAF2507-20 MA-3200- MLTS composition (1 C Si 0.014 0.33 Cu N 0.11 0.28; test at room to Yield sti MPa MM Rp0.2 Rg 629 7) test Min HRC 21.0	nation Headow Software Mn 0.77 2 emperature emperature emperature sength 1 1.0 1.0 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	nt Lot 7366 92493 Total P 0.017 (Tensile str Ma Sa 367	Pieces 5 5 5 5 8 0006 25. 9 8 8 3 3 7	Kg 55.0 55.0 15 6.9 Longation 5	ь Мо 96 3.91 Red.of āre % 2 67	a

AB SANDVIK MATERIALS TECHNOLOGY Reg No. 568234 6832 VAT No. SE683000-060901 SE-81181 SANDVIKEN SWEDEN www.smt.sandvik.com mto_service.smt@sandvik.com https://www.extranet.steel.sandvik.com/Certificates/CertView/ShowUni...

CERTIFICATE No. A/06-560259 Rev 00 Date 2006-03-23 Page 2/2

Folloving controls/tests have been satisfactorily performed: - Material Identification. - Visual inspection and dimensional control. Heat Treatment: 1100 degrees C/30 min. Quenched in water. The delivered products comply with the specifications and requirements of the order. The material is manufactured according to a Quality system, approved and registered to ISO 9001. The certificate is produced with EDP and valid without signature.

> AB SANDVIK MATERIALS TECHNOLOGY Reg No. 556234-6832 VAT No. SE683000-060901 SE-81181 SANDVIKEN SWEDEN www.smt.sandvik.com mto_service.smt@sandvik.com

> > 11/09/2009 11:26 a.m

Anexo B. Probeta para ensayo en tribómetro bola sobre anillo

Anexo C. Método Taguchi

En este anexo se describe de forma resumida los pasos involucrados en la aplicación del método Taguchi para diseñar experimentos (DET). La teoría y detalles pueden encontrarse en la publicación de Roy (Roy R. K., 2010).

Pasos generales en el método de Taguchi

- Definir el objetivo de investigación, o más específicamente, un comportamiento a medir del proceso. Esto puede ser el volumen de desgaste.
- 2. Determinar los parámetros que afectan el proceso. Los parámetros son variables dentro del proceso que afectan el comportamiento a medir, como cargas, frecuencias, etc., que pueden ser fácilmente controlados. Debe especificarse el número de niveles que deben modificarse los parámetros. Por ejemplo, un valor bajo y alto de 10N y 70N para la carga.
- 3. Crear matrices ortogonales para el diseño de parámetro que indica el número de condiciones para cada experimento.
- 4. Llevar a cabo los experimentos indicados en la matriz.
- 5. Completar el análisis de datos para determinar el efecto de los diferentes parámetros en el comportamiento medido.

En la figura B.1 se muestra una representación pictórica de estos y otros pasos posibles, dependiendo de la complejidad del análisis.

Figura B.1. Pasos del método de enfoque Taguchi (Sreenivas Rao, Kumar, Prakasham, & Hobbs, 2008)