

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

Evaluación termodinámica de una bomba de calor en ciclo de refrigeración transcrítico usando CO₂ como refrigerante

Autores:

Ergastolo Hurtado, Francesco

García Castellote, Raúl Rodrigo

Tutor Académico:

Ing. Juan B. Acosta A.

Bárbula, junio de 2011.

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

Evaluación termodinámica de una bomba de calor en ciclo de refrigeración transcrítico usando CO₂ como refrigerante

Trabajo de grado presentado a la ilustre Universidad de Carabobo para optar por el título de Ingeniero Mecánico.

Autores:

Ergastolo Hurtado, Francesco

García Castellote, Raúl Rodrigo

Tutor Académico:

Ing. Juan B. Acosta A.

Bárbula, junio de 2011.

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA

CERTIFICADO DE APROBACIÓN

Quienes suscriben, Miembros del Jurado designado por el Consejo de Escuela de Ingeniería Mecánica para examinar la Tesis de Pregrado titulada "**Evaluación termodinámica de una bomba de calor en ciclo de refrigeración transcrítico usando CO₂ como refrigerante**", presentada por los bachilleres **Ergastolo Hurtado Francesco**, portador de la cedula de identidad No. **V-17.954.202**, y **García Castellote Raúl Rodrigo**, portador de la cedula de identidad No. **V-18.353.005**, hacemos constar que hemos revisado y aprobado el mencionado trabajo.

Prof. Ing. Juan B. Acosta A. Presidente del jurado

Prof. Ing. Damelys Zabala Miembro del jurado Prof. Ing. José Velásquez Miembro del jurado

Bárbula, junio de 2011.

Resumen.

Actualmente la situación mundial debido a la destrucción la capa de ozono, ha alcanzado niveles sin precedentes, llevando a una crisis climática en todo el planeta y ocasionando tragedias naturales en numerosas comunidades.

Una de las causas de esta situación se debe al uso de refrigerantes dañinos al medio ambiente como los CFC's, HCFC's y HFC's; por lo tanto, es necesario crear nuevas alternativas para suplantar estos refrigerantes y una es el uso del CO₂, que es un fluido no toxico, no inflamable, y no se estaría produciendo sino que se tomaría del existente en el medio ambiente.

En este trabajo de grado se plantea un diseño alternativo desde el punto de vista termodinámico, donde se estudia el rendimiento de este tipo de equipo evaluando el COP a unas condiciones establecidas como acondicionamiento de ambiente, se diseña los intercambiadores de calor que requiere el sistema siendo estos el enfriador de gas y el evaporador usando correlaciones desarrollada por trabajos anteriores para este tipo de fluido, además de la selección del compresor y válvula de expansión diseñadas para aplicaciones con CO_2 usando catálogos de empresas, los cuales se encuentran disponibles en internet.

Los resultados obtenidos para el sistema con CO_2 , se comparan con los obtenidos para sistemas que usan distintos refrigerante de uso común en la actualidad en aplicaciones de acondicionamiento de aire, como el R-134a, R-404a y el R-410. Al comparar los resultados obtenidos para el CO_2 y el resto de los refrigerantes, se observó el potencial que puede tener este nuevo refrigerante, donde se muestra que los sistemas con CO_2 requieren equipos de menor tamaño a los actuales, siendo esto una ventaja para llevar a cabo la sustitución de los refrigerantes convencionales.

Por otro lado, se observó que el CO_2 es menos eficiente que los refrigerantes actuales en un ciclo de refrigeración simple, pero con modificaciones a los mismos es posible elevar la eficiencia a niveles más aceptables. A pesar de esto, el CO_2 posee propiedades termofísicas especiales que brindan mayores beneficios que el resto de los refrigerantes, siendo unas de éstas, que permite menor consumo de energía en los sistemas que trabajan con él, ya que el compresor debe comprimir un volumen menor para una misma cantidad de masa de refrigerante y no es contaminante para el medio ambiente, algo de gran importancia para la actualidad del planeta y población humana.

Índice general

INTRODUCCIÓN							
CAPÍTULO 1. DESCRIPCIÓN DEL PROBLEMA3							
1	1.1.	SITUACIÓN PROBLEMÁTICA					
1	1.2.	OBJETIVOS					
1	1.3.	JUSTIFICACIÓN4					
1	1.4.	LIMITACIONES					
1	1.5.	ALCANCE					
1	1.6.	ANTECEDENTES					
CAPÍTULO 2. MARCO TEÓRICO9							
2	2.1.	BOMBA DE CALOR					
2	2.2.	Componentes de una bomba de calor					
2	2.3.	ETAPAS DEL CICLO DE REFRIGERACIÓN					
2	2.4.	EL FUNCIONAMIENTO DE UNA BOMBA DE CALOR REVERSIBLE					
2	2.5.	BOMBA DE CALOR DE ABSORCIÓN					
2	2.6.	FOCOS DE LA BOMBA DE CALOR					
2	2.7.	COEFICIENTE DE DESEMPEÑO DE UNA BOMBA DE CALOR					
2	2.8.	APLICACIONES DE LA BOMBA DE CALOR EN DIVERSOS SECTORES					
2	2.9.	PROBLEMÁTICA ASOCIADA A LOS REFRIGERANTES					
2	2.10.	Refrigerantes					
2	2.11.	DIÓXIDO DE CARBONO (CO ₂)					
2	2.12.	FLUIDO SUPERCRÍTICO Y LA INTRODUCCIÓN A LOS CICLOS TRANSCRÍTICOS					
CAPÍTUI	CAPÍTULO 3. MARCO METODOLÓGICO41						
3	3.1.	NIVEL DE INVESTIGACIÓN					
3	3.2.	DISEÑO DE LA INVESTIGACIÓN					
3	3.3.	TÉCNICAS E INSTRUMENTOS PARA OBTENCIÓN DE DATOS					
3	3.4.	METODOLOGÍA DE CÁLCULO					
3	3.5.	LONGITUD DE LOS EQUIPOS					
3	3.6.	Selección de otros equipos del sistema de refrigeración y lubricante del					
SISTEMA	A						

CAPÍTULO 4	. EVALUACIÓN TERMODINÁMICA Y DISEÑO
4.1.	Evaluación de las propiedades del CO_2 , R-134A, R-404A y R-410A en el ciclo de
REFRIGERAC	IÓN SIMPLE
4.2.	$Comparación \ \text{del refrigerante} \ R-744 \ (CO_2) \ \text{y} \ \text{el resto} \ \text{de los refrigerantes} \ \ 70$
4.3.	Cálculo del evaporador para el sistema de refrigerante R-134a72
4.4.	Cálculo del evaporador para el sistema de refrigerante CO_2 (R-744)81
4.5.	Cálculo de los evaporadores para los sistemas con los refrigerantes R -404a
у R-4 10А.	
4.6.	Cálculo del condensador para el sistema de refrigerante $R-134a$ 91
4.7.	CÁLCULO DEL ENFRIADOR DE GAS PARA EL SISTEMA DE REFRIGERANTE R-744
4.8.	Cálculo de los condensadores para los sistemas de refrigeración con R-404a
у R- 410А	
4.9.	LONGITUD DE LOS INTERCAMBIADORES DE CALOR
4.10.	Selección de los demás componentes
CAPÍTULO 5	. ANÁLISIS DE RESULTADOS Y CONCLUSIONES 111
5.1.	ANÁLISIS DE RESULTADOS
5.2.	CONCLUSIONES
5.3.	RECOMENDACIONES
BIBLIOGRA	FÍA

Índice de tablas

Tabla 2.1. Contenido de cloro, odp y vida estimada para diferentes refrigerantes.	26
Tabla 2.2. Propiedades críticas de algunos refrigerantes seleccionados.	35
Tabla 4.1. Propiedades para el co2 en los puntos definidos.	66
Tabla 4.2. Propiedades del CO ₂ a las condiciones de evaporación.	66
Tabla 4.3. Propiedades del CO ₂ a las condiciones de enfriamiento.	67
Tabla 4.4. Propiedades para el R-134a en los puntos definidos	68
Tabla 4.5. Propiedades para el R-404a en los puntos definidos	68
Tabla 4.6. Propiedades para el R-410a en los puntos definidos	68
Tabla 4.7. Propiedades del R-134a, R-404a y R-410a a las condiciones de evaporación	69
Tabla 4.8. Propiedades del R-134a, R-404a y R-410a a las condiciones de evaporación	70
Tabla 4.9. Tabla comparativa para todos los refrigerantes.	72
Tabla 4.10. Diámetro interno y número de tubos establecido para el diseño	72
Tabla 4.11. Propiedades para el aire a 295,5 k y 1 atm	76
Tabla 4.12. Suposiciones establecidas para el diseño del banco de tubos aleteados.	77
Tabla 4.13. Temperaturas de entrada y salida para ambos fluidos en el evaporador	80
Tabla 4.14. Cálculos geométricos para el banco de tubos.	85
Tabla 4.15. Cálculos internos para los evaporadores de R-404a y R-410a	88
Tabla 4.16. Cálculos externos para el evaporador de R-404a y R-410a	89
Tabla 4.17. Propiedades para el aire a 308 k y 1 atm	93
Tabla 4.18 temperaturas de entrada y salida para condensador de 134a	95
Tabla 4.19. Propiedades para el aire a 313 k y 1 atm	99
Tabla 4.20. Temperaturas de entrada y salida para el enfriador de gas de R-744.	101
Tabla 4.21. Cálculos internos para el condensador de R-404a y R-410a.	103

Tabla 4.22. Cálculos externos para el condensador de R-404a y R-410a.	104
Tabla 4.23. Cálculos de longitudes para los distintos equipos.	107
Tabla 4.24. Especificaciones técnicas del compresor seleccionado	108
Tabla 4.25. Especificaciones de la válvula de expansión seleccionada	109
Tabla 5.1. Condiciones de evaluación de los ciclos de refrigeración	112
Tabla 5.2. Propiedades de los refrigerantes en el evaporador	113
Tabla 5.3. Diferencia de entalpías en el compresor de los refrigerantes.	115
Tabla 5.4. Trabajo consumido por el compresor por cada refrigerante.	116
Tabla 5.5. COP para cada refrigerante	117

Índice de figuras

fig. 2.1. Esquema de un ciclo de refrigeración básico	17
fig. 2.2. Funcionamiento de una bomba de calor aire-aire reversible	24
fig. 2.3. Diagrama de fases para refrigerante R-744	33
fig. 2.4. Ciclos de refrigeración subcrítico y transcrítico	36
fig. 2.5. Diagrama del ciclo transcrítico.	37
fig. 2.6. Diagrama presión-entalpía de un ciclo de refrigeración transcrítico.	39
fig. 3.1. Disposición típica de los tubos de un intercambiador de calor.	54
fig. 3.2. Parámetros de diseño para aletas anulares.	54
fig. 4.1. Diagrama p-h para el refrigerante R-744 (CO ₂)	63
fig. 4.2. Ciclo de refrigeración simple subcrítico (izquierda) y transcrítico (derecha).	64
fig. 4.3. Diagrama p-h del refrigerante R-744 para condiciones dadas.	65
fig. 4.4. Esquema de ciclo de refrigeración transcrítico simple.	71
fig. 4.5. Evaporador diseñado para el R-134a	81
fig. 4.6. Evaporador diseñado para el CO ₂ .	87
fig. 4.7. Evaporador diseñado para el R-404a	90
fig. 4.8. Evaporador diseñado para el R-410a	90
fig. 4.9. Condensador diseñado para el R-134a.	96
fig. 4.10. Enfriador de gas diseñado para el CO ₂ .	102
fig. 4.11. Condensador diseñado para el R-404a	105
fig. 4.12. Condensador diseñado para el R-410a	105

Nomenclatura.

- A_1 : Distancia entre los tubos de un banco de tubos, m.
- A: Área de transferencia de calor por metro de longitud, m^2/m
- A_{tubo} : Área transversal donde fluye el refrigerante, m^2 .
- A_s : Área de transferencia de calor, m^2 .
- C_p : Capacidad calórica del fluido, $kJ / kg \cdot K$.
- COP : Coeficiente de desempeño, adimensional.
- D_i : Diámetro interno de la tubería, m.
- f_A: Factor de fricción.
- F: Factor multiplicativo bifásico.
- G: Velocidad másica superficial del fluido, kg/m^2 . s.
- h: Entalpía del fluido, kJ/kg.
- h_e : Entalpía del fluido a la entrada del intercambiador de calor, kJ/kg.
- \bar{h}_i : Coeficiente convectivo dentro del tubo, W/m^2 . K.
- h_s : Entalpía del fluido a la salida del intercambiador de calor, kJ/kg.
- h_f Altura de la aleta. m.
- \bar{h}_{FZ} : Coeficiente de ebullición nucleada, W/m^2 . K.
- L_c : Longitud característica, *m*.

 L_{equipo} : Longitud del equipo, *m*.

 \dot{m}_{ref} : Flujo másico de refrigerante, kg/s.

 \dot{m}_{tubo} : Flujo másico de refrigerante dentro de cada tubo, kg/s.

Nu: Número de Nusselt, adimensional.

 n_{tubo} : Número de tubos en el intercambiador de calor, adimensional.

 Pr_l : Número de Prandtl en fase líquida, adimensional.

P_{sat}: Presión de saturación del fluido, *kPa*.

 Q_o : Carga térmica en el evaporador del sistema de refrigeración, kJ.

*Re*_{bf}: Número de Reynolds bifásico, adimensional.

Re_D: Número de Reynolds dentro de una tubería, adimensional.

*Re*₁: Número de Reynolds en estado líquido, adimensional.

 Re_{v} : Número de Reynolds en estado de vapor, adimensional.

S: Factor de supresión de la ebullición nucleada.

 S_f : Separación entre las aletas, m.

 S_L : Distancia horizontal entre centros de los tubos de un banco de tubos, m.

 S_T : Distancia vertical entre centros de los tubos de un banco de tubos, m.

T: Temperatura de evaluación del fluido, $^{\circ}C$.

 T_0 : Temperatura de evaporación del fluido, °*C*.

 T_e : Temperatura de entrada del fluido al intercambiador de calor, °C.

 T_{ga} : Temperatura del CO₂ a salida del enfriador de gas, °C.

- T_s : Temperatura de salida del fluido al intercambiador de calor, °C.
- T_{sat} : Temperatura de saturación del fluido, °*C*.
- T_w Temperatura del fluido en la pared del tubo del intercambiador de calor, °C.
- U: Coeficiente global de transferencia de calor, W/m^2 . K.
- V_{∞} : Velocidad del aire a la entrada del banco de tubos, m/s.
- W: Trabajo consumido por el compresor, kJ.
- *x*: Calidad del fluido, adimensional.
- X_{tt}: Parámetro de Lockhart-Martinelli, adimensional.
- δ : Espesor de la aleta, *m*.
- ρ : Densidad del fluido, kg/m^3 .
- ρ_l : Densidad del fluido evaluada en fase líquida, kg/m^3 .
- ρ_v : Densidad del fluido evaluada en fase de vapor, kg/m^3 .
- ρ_w : Densidad del fluido a la temperatura de la pared, kg/m^3 .
- μ : Viscosidad dinámica, $N \cdot s/m^2$.
- μ_{ν} : Viscosidad dinámica evaluada en fase de vapor, *N* . *s*/*m*².
- μ_l : Viscosidad dinámica evaluada en fase líquida, $N \cdot s/m^2$.
- $\Delta T_{dise\,\tilde{n}o}$: Diferencia de temperaturas de diseño, °*C*.
- ΔT_{ml} : Promedio logarítmico de la diferencia de temperaturas, °C.

Los sistemas de refrigeración, son parte fundamental de la vida cotidiana. En la mayoría de los hogares de Venezuela se pueden encontrar artículos de línea blanca como neveras, congeladores, aires acondicionados, etc., los cuales funcionan bajo los principios básicos de un ciclo de refrigeración, que fueron descubiertos a mediados del siglo XIX, pero no fue sino hasta mediados del siglo XX que estos artículos entraron al mercado. En los vehículos se comenzaron a implementar estos sistemas desde 1939, cuando la empresa Packard Motor Car Company produjo el primer vehículo fabricado en serie que contaba con un sistema de refrigeración/calefacción. En las industrias, se encuentran infinidad de procesos de enfriamiento y calentamiento desde hace casi dos siglos, cuando en el año 1834, Jacob Perkins patentó una máquina de absorción que utilizaba éter.

A pesar que estos sistemas han evolucionado en cuanto a ingeniería se refiere, las bases para el diseño no han cambiado mucho, por la necesidad de tener sistemas que soporten mayores cargas térmicas, a menores costos. Pero esto cambió cuando en el año 1974, comenzó a notarse el efecto que tenían los refrigerantes clorados en la capa de ozono, momento en el que el menor impacto ambiental posible pasó a ser un factor importante en el diseño, apareciendo en los últimos años refrigerantes de nueva generación, no contaminantes al medio ambiente, como el CO₂.

En este trabajo se estudia el comportamiento del CO_2 en sistemas transcríticos de refrigeración y se compara con el desempeño de refrigeantes convenicionales en aplicaciones de acondicionamiento de ambiente.

En el primer capítulo del trabajo se describe el problema, realizando la formulación del mismo, identificando los objetivos para la investigación además del

alcance y limitaciones que presenta el trabajo. Por último se presentan antecedentes de trabajos realizados anteriormente referentes al uso y comportamiento del CO₂ como refrigerante en diversas aplicaciones.

El segundo capítulo muestra el marco teórico en el que se apoya la investigación, presentando información referente a bombas de calor, sus componentes y diferentes aplicaciones. También contiene información referente a los refrigerantes convencionales en las distintas aplicaciones de refrigeración en la actualidad y una descripción del CO₂, comportamiento y su aplicación en los sistemas transcríticos.

En el tercer capítulo se expone la metodología usada para cumplir con los objetivos establecidos para el trabajo, comenzando por la evaluación de los refrigerantes seleccionados para el estudio y comparación, cálculos de la eficiencia de los sistemas de refrigeración evaluados, diseño de los intercambiadores de calor que forman parte de los equipos que usan cada uno de los refrigerantes y por último la selección del compresor y válvula de expansión para el sistema transcrítico con CO₂.

El cuarto capítulo presenta los resultados obtenidos al seguir la metodología establecida, obteniendo las propiedades de los fluidos, valores de COP o eficiencia del sistema y áreas de transferencia de calor requerida por cada uno de los intercambiadores diseñados para los sistemas de refrigeración con los refrigerantes evaluados para realizar la comparación entre ellos. También se presentan los datos y especificaciones del compresor y válvula de expansión seleccionada el sistema de refrigeración transcrítico con CO_2 .

El quinto capítulo muestra el análisis de los resultados obtenidos en la investigación y las conclusiones que surgen de la realización del trabajo presentado. También contiene las recomendaciones sugeridas para futuros trabajos referentes al tema.

CAPÍTULO 1

Descripción del problema.

1.1.Situación problemática.

Actualmente la situación mundial debido a la destrucción de la capa de ozono ha escalado niveles de relevancia sin precedentes, por lo que se hace necesario llevar a cabo proyectos que ayuden a resolver esta problemática. Una de las fuentes más importantes de contaminación, viene dada por el uso de refrigerantes dañinos al ambiente como los CFC's, los HCFC's y los HFC's, siendo estos últimos, los más utilizados en la actualidad, debido a que mantiene la eficacia de los ciclos, a cambio de una reducción de su rendimiento.

Sumado a esto, se encuentra el problema del elevado consumo energético que se presenta al utilizar sistemas de refrigeración cuyo fluido primario son estos refrigerantes.

1.2.Objetivos.

1.2.1. Objetivo general.

Evaluar termodinámicamente una bomba de calor en ciclo de refrigeración transcrítico usando CO₂ como refrigerante.

1.2.2. Objetivos específicos.

 Evaluar las propiedades de CO₂ en estado subcrítico y supercrítico para ser usado como refrigerante.

- Comparar el CO₂ con otros refrigerantes mediante el estudio teórico de ciclos de refrigeración.
- Diseñar y comparar los principales componentes de un equipo de refrigeración transcrítico que trabaja con CO₂ como refrigerante y los elementos de un sistema de refrigeración convencional.
- 4. Seleccionar el compresor, el aceite, y la válvula de expansión, compatibles con el CO₂.

1.3. Justificación.

Según Octavio Casado, gerente de Power System, el aire acondicionado es uno de los electrodomésticos que ha visto más popularizado su uso, y en los últimos tres años hubo un incremento de aparatos instalados en los hogares venezolanos, lo que en consumo de corriente eléctrica representa el 70%, y si a ese porcentaje se le suma el consumo de un refrigerador o nevera, que es de alrededor de un 15% de la energía consumida por una vivienda, se tiene que un 85% de toda la electricidad producida en el país, es usado por un ciclo de refrigeración (Comité de electricidad, 2010).

La emisión de CO_2 en Venezuela, fue de 171.593.000 TM aproximadamente, que equivale a un 0,6% de la emisión mundial para el año 2006. La cantidad per cápita está alrededor de 6,31 TM, quedando así en el puesto 28 del ranking de países con más emisiones de CO_2 . En cuanto al uso de la energía eléctrica, el país se encuentra actualmente en el primer puesto de América Latina, con 4.126kWh per cápita, por delante de Chile, Argentina, Uruguay y Brasil (Comité de electricidad, 2010).

Después de todo lo expuesto, es imperativo tomar acciones que contribuyan de manera concreta, tanto a la disminución de emisiones de CO₂, como a la reducción del elevado consumo eléctrico del venezolano. Por lo tanto, esta investigación propone responder ambas problemáticas, primero estableciendo una comparación entre el refrigerante propuesto, con los actualmente usados en Venezuela para determinar la factibilidad del proceso termodinámico, y luego realizar los diseños preliminares de

sus dos componentes primarios, el evaporador y el enfriador de gas, y por último determinar el consumo energético teórico necesario y los porcentajes de fugas de CO_2 .

1.4.Limitaciones.

- La falta de equipos para la evaluación experimental.
- La información que hasta ahora ha sido descubierta en cuanto a correlaciones para el número de Nusselt que apliquen a fluidos internos en tuberías, se mantiene en alta confidencialidad, debido al costo que este tipo de estudios representan, por lo que sólo se usarán aquellas correlaciones que estén disponibles en la actualidad.

1.5.Alcance.

- Se pretende evaluar sólo teóricamente el ciclo de refrigeración transcrítico usando el CO₂ como refrigerante, debido a que el montaje de un banco de pruebas para ciclos transcríticos implica un costo muy elevado y un tiempo de construcción de las mismas proporciones.
- Se plantea diseñar el evaporador y el enfriador de gas sólo para un caso de acondicionamiento de ambiente; lo importante es establecer la metodología de diseño para trabajos futuros.
- Seleccionar los distintos componentes asociados al ciclo de refrigeración para un sólo caso, debido a la alta gama de aparatos y equipos, y los distintos usos que éstos pueden recibir.
- Se pretende evaluar las propiedades del CO₂ supercrítico, sólo para el rango en estudio, ya que elaborar una tabla no es parte de la investigación.

1.6.Antecedentes

Zhao y Liao, en el año 2002, midieron experimentalmente los coeficientes de transferencia de calor en micro tubos circulares horizontales en los que fluye CO_2 supercrítico. Este experimento se realizó para variaciones de temperaturas, de presiones, y en diámetros de tubo, y un aumento periódico del flujo másico, utilizando las correlaciones existentes. Con esta información, desarrollaron una correlación para estimar el número de Nusselt que funcionaría en tuberías a temperatura constante en flujo forzado.

En este mismo orden de ideas, Spindler, en el año 2006, revisó diferentes correlaciones para el cálculo del coeficiente de transferencia de calor para CO_2 en estado supercrítico, en condiciones de enfriamiento. En este trabajo, se tomó en cuenta la variación de las propiedades que se daban de acuerdo a la variación de la temperatura y la presión. Una cantidad importante de correlaciones fueron estudiadas en este trabajo. También se resaltó la influencia del efecto de flotación en el fluido y sus propiedades.

Antonijevic, en el año 2008, realizó un estudio comparativo entre el CO_2 y el refrigerante 134a, para su utilización en sistemas de acondicionamiento de ambiente de automóviles. En este trabajo se estudiaron distintas condiciones de operatividad tanto para ciclos de refrigeración y también se estableció la posibilidad de usar el CO_2 en un ciclo de calefacción.

En el año 2009, Hinde, David *et al.* en su trabajo "Carbon dioxide in north american supermarkets", estudiaron la nueva ola de sistemas de refrigeración que están siendo implementados en distintas partes de Estados Unidos y Canadá, en los que usan el CO_2 como refrigerante secundario, junto con un HFC en un sistema de refrigeración para la conservación de alimentos. Revisaron el consumo energético tanto de los sistemas duales como de los que trabajan únicamente con refrigerantes sintéticos, descubriendo que los primeros, son equipos superiores desde muchos puntos de vista,

debido a la reducción de la longitud requerida de tubería, las disminuciones casi totales de emisiones de CO_2 al ambiente, y la reducción de energía eléctrica.

Por último, en el año 2010, Taira, Shigerahu *et al.* Investigadores de Daikin Industries, LTD, elaboraron un estudio acerca de la factibilidad y el diseño de un calentador de agua para los habitantes de Japón, donde comparan también el CO_2 como refrigerante, frente a refrigerantes el R410a y el R407c. En este trabajo se habla de los componentes más importantes y de su diseño para un estado de CO_2 supercrítico. Capitulo 1. Descripción del problema.

CAPÍTULO 2

Marco teórico.

2.1.Bomba de calor.

Se denomina bomba de calor a una máquina térmica capaz de transferir calor de una fuente fría a otra más caliente. Se podría definir también como un equipo de aire acondicionado, que en invierno toma calor del aire exterior, a baja temperatura y lo transporta al interior del local que se ha de calentar, y viceversa; todo este proceso se lleva a cabo mediante el accionamiento de un compresor.

Su ventaja fundamental es el consumo, el cual influye en el ahorro de energía, que es lo mismo decir, ahorro de dinero. Sirva como ejemplo: por 1 kW de consumo de la red eléctrica, da 3 kW de rendimiento en calor; lo cual equivale a decir que consumiendo la misma energía eléctrica, la bomba de calor suministra tres veces más calor que un equipo de calefacción eléctrica.

Resumiendo, tanto en invierno como en verano actúa como un equipo de acondicionamiento de ambiente.

El principio de funcionamiento de este tipo de equipos es simple, pues es sabido que el calor fluye de forma natural desde las altas temperaturas a las bajas temperaturas. Sin embargo, una bomba de calor es capaz de hacerlo en dirección contraria, consumiendo una cantidad de trabajo relativamente baja. Estos equipos también pueden transferir este calor desde las fuentes naturales del entorno a baja temperatura (foco frío), tales como aire, agua o la propia tierra, hacia las dependencias interiores que se pretenden calentar o bien para emplearlo en procesos que precisan calor. Es posible también aprovechar los calores residuales de procesos industriales como foco frío, lo que permite disponer de una fuente a temperatura conocida y constante que mejora el rendimiento del sistema.

Las bombas de calor también pueden ser utilizadas para refrigerar. En este caso, la transferencia de calor se realiza en el sentido contrario; es decir, desde la aplicación que requiere frío al entorno que se encuentra a temperatura superior.

En algunas ocasiones, el calor extraído en el enfriamiento es utilizado para calentar algo.

Para que exista el transporte de energía desde la fuente de calor al sumidero, es necesario aportar un trabajo. Teóricamente, el calor total aportado por el equipo es el extraído de la fuente de calor más el trabajo externo aportado.

El principio de funcionamiento de las bombas de calor proviene de lo establecido por Nicolas Léonard Sadi Carnot en 1824, de los conceptos de ciclo y reversibilidad, y por la concepción teórica posterior de Lord Kelvin. Un gas que evoluciona en ciclos, es comprimido y luego expandido y del que se obtiene frío y calor.

El desarrollo de los equipos de refrigeración tuvo un progreso rápido en aplicaciones como la conservación de alimentos y el aire acondicionado. Sin embargo, no se aprovecharon las posibilidades de utilizar la otra fuente térmica, el calor, o el frío y calor simultáneamente, debido a las dificultades tecnológicas que presentaba la construcción de la bomba de calor, y al bajo precio de la energía, que hacía que ésta no fuera competitiva con los sistemas tradicionales de calefacción a base de carbón, fuel-oil o gas, que presentaban una clara ventaja en relación con sus costos. Pero la crisis del petróleo y la subida de los precios de los combustibles a partir de mediados de 1970, benefició el desarrollo de este tipo de aparatos.

En el momento actual, la utilización de bombas de calor supone un ahorro energético, ya que consumen menos energía primaria que cualquier otro sistema, pero hay que tener en cuenta cómo se genera la energía eléctrica que consumen para saber si de verdad no contaminan; además de esto, las bombas de calor aportan una reducción considerable de las emisiones de CO_2 .

Si la energía eléctrica proviene de fuentes como la hidroeléctrica o eólica, entonces la contaminación es nula, pero si son térmicas, es evidente que existe contaminación, que a final de cuentas es mucho menor que otros aparatos.

2.2. Componentes de una bomba de calor (ASHRAE, 2009).

La mayor parte de las bombas de calor existentes trabajan con el ciclo de compresión de un fluido condensable.

Sus principales componentes son:

- a) Compresor.
- **b**) Condensador.
- c) Evaporador.
- d) Dispositivos de expansión.
- e) Dispositivos de seguridad y control.
- f) Dispositivos auxiliares.

Los componentes se conectan en un circuito cerrado por el que circula un fluido refrigerante. Este circuito con frecuencia es denominado ciclo de refrigeración. Cada uno de estos componentes es explicado con detalle a continuación.

2.2.1. Compresor.

Eleva la presión del vapor refrigerante desde una presión de entrada a una presión de salida más alta. Se pueden clasificar en dos grandes grupos: compresores volumétricos o de desplazamiento positivo, que pueden ser alternativos o rotativos, y compresores centrífugos.

En cuanto al acoplamiento motor-compresor pueden ser:

- a) Abiertos: El motor y el compresor son independientes. Los ejes se acoplan en el montaje asegurándose la estanqueidad en el paso del eje.
- b) Semiherméticos: El compresor y el motor comparten el eje. Parte del calor generado en el motor se recupera en el fluido refrigerante, con lo que el rendimiento es superior al de los abiertos.
- c) Herméticos: El motor y el compresor, además de compartir el eje, se alojan en la misma envolvente, con lo que la recuperación del calor generada en el motor es mayor.

En las bombas de calor eléctricas se utilizan compresores herméticos para potencias inferiores a 60-70 kW; para potencias superiores (normalmente aire-agua), se utilizan compresores semiherméticos. Se utilizan compresores abiertos en aplicaciones aisladas y nunca en equipos de serie; en las bombas de calor accionadas mediante motor de gas, el compresor también es abierto. El compresor lleva incorporado un embrague electromagnético que permite regular la potencia en función de la demanda térmica; por otra parte, suelen disponer de un motor de cuatro tiempos con un compresor alternativo abierto.

2.2.2. Condensador.

Se puede clasificar en:

Condensadores con aire.

Estos condensadores suelen tener tubos de cobre con aletas de aluminio que incrementan la transmisión de calor. Adicionalmente, disponen de ventiladores que inducen la circulación del aire a calentar entre las aletas del condensador.

Condensadores con agua.

Estos a su vez, pueden clasificarse en:

- a) Equipo de doble tubo en contracorriente: El fluido refrigerante circula por el espacio anular donde condensa, mientras que el agua a calentar circula por el tubo interior. El material empleado para fabricar los tubos es cobre, y se suele emplear en equipos de potencia térmica de 100 kW. Presenta problemas de mantenimiento por la dificultad de la limpieza.
- b) Equipo multitubular horizontal: El fluido refrigerante se condensa en el interior de los tubos de cobre que se encuentran arrollados dentro de una carcasa por donde circula el agua. La carcasa suele ser de acero con tapas de fundición. Debido a las características del agua puede ser necesario que los tubos del condensador sean de acero inoxidable o de aleación de níquel.

2.2.3. Evaporador.

Según el estado del vapor de refrigerante a la salida del evaporador, éstos se clasifican en:

- a) De expansión seca: El vapor que se introduce en el compresor está ligeramente sobrecalentado y hay ausencia total de líquido. Estos evaporadores se emplean con compresores centrífugos donde dada la elevada velocidad, la presencia de gotas de líquido dañaría los álabes.
- b) Inundado: El líquido refrigerante ocupa la mayor parte del espacio interior disponible, quedando sólo un pequeño espacio libre que se llena con el vapor que toma la línea de succión. La denominación de inundado que se da a este tipo de evaporador se debe a la presencia de refrigerante líquido que inunda las tuberías del evaporador.

Según el fluido del que extraiga el calor, los evaporadores pueden ser:

- Evaporadores con aire: Las baterías evaporadoras son similares a las a) condensadoras. Disponen de una serie de tubos por los que circula el fluido refrigerante y una carcasa donde se alojan estos tubos y donde se fuerza la corriente de aire desde el exterior con la ayuda de unos ventiladores. Estos ventiladores pueden ser axiales o centrífugos. Los centrífugos son capaces de impulsar mayores caudales de aire y presentan menores niveles sonoros. Cuando la temperatura en la superficie de los tubos del evaporador disminuye por debajo del punto de rocío del aire, se produce el fenómeno de la condensación y, si se reduce aún más la temperatura, el escarchado. El escarchado incide negativamente en los rendimientos por dos motivos: pérdida en la superficie de intercambio, y pérdida de carga en el flujo de aire a través del conjunto de tubos. Por esta razón las bombas de calor disponen de dispositivos de desescarche incorporando resistencias en el evaporador o invirtiendo el ciclo durante periodos reducidos de tiempo.
- b) Evaporadores con agua: Pueden ser coaxiales en contracorriente o bien multitubulares.

2.2.4. Dispositivos de expansión.

Son aquellos dispositivos en los que ocurre la reducción de presión de manera isoentálpica (es decir con variación de entalpía igual a 0) desde la presión de condensación hasta la de evaporación.

Los elementos utilizados son:

- a) Tubo capilar para máquinas de potencia reducida y constante.
- b) Válvula de expansión: Las válvulas de expansión tienen una sección variable. Esta sección puede ser variada automáticamente, de forma que el sobrecalentamiento tras la evaporación se mantenga constante y no

accedan gotas de líquido al compresor. En este caso, la válvula recibe el nombre de termostática.

2.2.5. Dispositivos de seguridad y control.

El compresor posee ciertos dispositivos de seguridad y control para aquellos casos en que se esté trabajando fuera de las condiciones permitidas. Estos elementos controladores son:

- ✓ De alta presión: Detiene el compresor cuando se alcanza una presión de condensación elevada.
- De baja presión: Detiene el funcionamiento del compresor cuando la presión de aspiración es demasiado baja.
- ✓ De aceite: Detiene el compresor cuando baja la presión del aceite en el circuito de refrigeración y lubricación de aceite.
- ✓ De descarga: Desactiva el compresor cuando la temperatura de descarga es demasiado elevada.

2.2.6. Dispositivos auxiliares.

- Válvulas de cuatro vías: Invierten el ciclo. Son utilizadas en bombas de calor reversibles, y en funcionamiento para desescarche.
- Válvulas solenoides: Cuando el compresor se detiene, impiden el paso del fluido al evaporador evitando que se inunde.
- Deposito: A la salida del condensador y antes de la válvula de expansión se sitúa un depósito (acumulador) donde queda el excedente de fluido refrigerante. Antes del acumulador se coloca un filtro con el que se limpia el refrigerante de impurezas de tal manera que no dañe el compresor.

2.3. Etapas del ciclo de refrigeración (Çengel y Boles, 2006).

- En el evaporador, la temperatura del fluido refrigerante se mantiene por debajo de la temperatura de la fuente de calor (foco frío), de esta manera el calor fluye de la fuente al fluido refrigerante propiciando su evaporación.
- 2. En el compresor, el vapor que sale del evaporador es comprimido, elevando su presión y temperatura.
- **3.** El vapor caliente accede al condensador. En este equipo, el fluido cede el calor de vaporización al medio.
- 4. Finalmente, el líquido a alta presión obtenido a la salida del condensador se expande mediante la válvula hasta alcanzar la presión y temperatura del evaporador. En este punto el fluido comienza de nuevo el ciclo accediendo al evaporador.

2.4.El funcionamiento de una bomba de calor reversible (Universidad Politécnica de Valencia, 2010).

Ciertos tipos de bombas de calor (reversibles) son capaces de proporcionar calefacción y refrigeración. Las bombas de calor reversibles incorporan una válvula de cuatro vías que permite la inversión de circulación del fluido frigorífico. De esta forma se consigue:

- ✓ Transferir calor del exterior hacia el interior en el ciclo de calefacción.
- ✓ Transferir calor del interior hacia el exterior en el ciclo de refrigeración.

En la figura presentada a continuación se muestra el esquema del ciclo, bien sea de calefacción o refrigeración.

Fig. 2.1. Esquema de un ciclo de refrigeración básico.

2.4.1. Ciclo de calefacción:

- a) El compresor (4) eleva la presión y temperatura del fluido frigorífico.
- b) En el condensador (1), situado en el interior del recinto a calentar, el fluido cede al aire su calor latente.
- c) El fluido en estado líquido y a alta presión y temperatura se expande en la válvula (2) reduciendo su presión y temperatura, evaporándose parcialmente.
- d) En el evaporador (3), situado en el exterior, el fluido refrigerante completa su evaporación absorbiendo calor del aire exterior, retornando al compresor a través de una válvula de cuatro vías.

2.4.2. Ciclo de refrigeración:

- a) El compresor eleva la presión y temperatura del fluido frigorífico (4) siguiendo su camino a través de la válvula de cuatro vías.
- b) En el condensador (1), situado en el exterior, el fluido se condensa cediendo su calor al medio exterior.

- c) El fluido en estado líquido y alta presión se expande en la válvula (2) reduciendo su presión y evaporándose en parte.
- **d**) En el evaporador, situado en el interior del recinto a refrigerar, el fluido frigorífico completa su evaporación absorbiendo calor del medio interior.

2.5.Bomba de calor de absorción (Çengel y Boles, 2006).

Las bombas de calor de absorción son accionadas térmicamente; esto es, la energía aportada al ciclo es térmica en vez de mecánica como en el caso del ciclo de compresión. El sistema de absorción se basa en la capacidad de ciertas sales y líquidos de absorber fluido refrigerante. Las parejas de fluidos más utilizadas actualmente son: agua como fluido refrigerante en combinación con bromuro de litio como absorbente, o bien el amoníaco como refrigerante utilizando agua como absorbente. En el ciclo agua-bromuro de litio, el agua, en un circuito a baja presión, se evapora en un intercambiador de calor, llamado evaporador, el cual enfría un fluido secundario, que refrigerará ambientes o cámaras. Acto seguido el vapor es absorbido por el bromuro de litio, produciendo una solución concentrada. Esta solución pasa al calentador, donde se separan disolvente y soluto por medio de calor procedente de una fuente externa; el agua vuelve al evaporador, y el bromuro al absorbedor para reiniciar el ciclo. Al igual que los sistemas de compresión que utilizan agua en sus procesos, requiere una torre de enfriamiento para disipar el calor sobrante.

Los ciclos de absorción son análogos a los de compresión, únicamente se sustituye el compresor por un circuito de disoluciones que realiza la misma función que éste; es decir, eleva la presión y temperatura del fluido frigorífico en estado vapor. El circuito de disoluciones, consiste en un absorbedor, una bomba que impulsa la disolución, un generador y una válvula de expansión.

Se obtiene energía térmica en el condensador y en el absorbedor. En el generador se consume energía térmica a alta temperatura, y en la bomba energía mecánica.
2.6.Focos de la bomba de calor (ASHRAE, 2009).

Una bomba de calor extrae energía de un medio, y mediante un trabajo externo, la cede a otro ambiente que se desea acondicionar. El medio del que se extrae la energía es llamado foco frío y el medio al que se cede se le conoce como foco caliente. Usualmente estos dos ambientes están separados de alguna manera, procurando tener dos espacios bien definidos entre los cuales habrá el intercambio de energía.

2.6.1. Focos fríos.

Un foco frío ideal es aquel que tiene una temperatura elevada y estable a lo largo de la estación en que es necesario calentar, está disponible en abundancia, no es corrosivo o contaminante, tiene propiedades termodinámicas favorables, y no requiere costos elevados de inversión o mantenimiento.

Existen varios tipos de focos fríos, los cuales pueden ser:

Aire atmosférico.

Su utilización presenta problemas de formación de escarcha. Este problema se resuelve invirtiendo el ciclo durante pequeños periodos, lo que supone un gasto adicional de energía. Para temperaturas por encima de 5°C no es necesario el desescarche (defrosting).

Aire de extracción.

Es una fuente de calor común en edificios residenciales y comerciales. El equipo recupera el calor del aire de ventilación y proporciona calefacción. Existen sistemas diseñados para trabajar con una combinación de aire natural y de aire de extracción.

Agua natural.

Se pueden utilizar como focos fríos las aguas de ríos, lagos, aguas subterráneas o del mar. La eficiencia obtenida con este foco es muy elevada y no presenta problemas de desescarche. La temperatura del agua del mar a cierta profundidad (25 - 50 m) es constante (entre 5°C y 8°C) e independiente de cambios climáticos en el exterior; además, la congelación no tiene lugar hasta -1°C ó -2°C. Cuando se utiliza agua del mar hay que prever problemas de corrosión y de proliferación de algas.

Energía solar.

Consiste en la captación de energía solar mediante paneles solares, en combinación con la bomba de calor.

Energía geotérmica del suelo y subsuelo.

Estas bombas se suelen usar en climas fríos, donde las temperaturas extremas no permiten el funcionamiento de bombas que utilicen como foco frío el aire exterior. Para aprovechar la energía del suelo es necesario un sistema de tuberías. Estas instalaciones tienen un costo elevado, y requieren una gran superficie de terreno.

Energía residual y procedente de procesos.

Como foco frío se pueden utilizar efluentes industriales, aguas utilizadas para enfriar procesos de la industria o de los condensadores de producción de energía eléctrica, aguas residuales, etc. Son fuentes con una temperatura constante a lo largo del año. Los principales problemas para su utilización son la corrosión y obstrucción del evaporador como consecuencia de las sustancias contenidas en ellas.

2.6.2. Focos calientes.

Aire.

El calor obtenido del foco frío se cede al aire que pasa directamente a la habitación o es forzado a través de un sistema de conductos.

Agua.

Apropiados para la producción de agua para calefacción o agua caliente sanitaria y procesos industriales. A través de un sistema de tuberías se distribuye a radiadores especialmente diseñados, a sistemas de suelo radiante o a fan-coils.

2.7.Coeficiente de desempeño de una bomba de calor (ASHRAE, 2009).

Se define el coeficiente de desempeño de una bomba de calor COP (coefficient of perfomance) como el cociente entre la energía térmica cedida por el sistema y la energía convencional absorbida o necesaria para su funcionamiento.

Las condiciones del foco caliente y del frío van variando a lo largo del año, y en consecuencia las temperaturas a las que debe trabajar el fluido también deben variar. Por esta razón es posible que haya que aportar al sistema energías adicionales a la del compresor en los momentos más desfavorables.

A la hora de estudiar la viabilidad e interés de una bomba de calor en una determinada aplicación es necesario determinar el valor de este coeficiente, que se define como:

$$COP = \frac{Q}{W + W'} \tag{2.3}$$

21

Siendo:

Q: Calor total cedido para la calefacción en el periodo considerado en valor absoluto.W: Trabajo realizado por el compresor sobre el fluido en el periodo considerado en valor absoluto.

W': Resto de energías consumidas en el periodo considerado: pérdidas en el motor eléctrico, aportes externos de calor, etc.

Al coeficiente de prestación estacional también se le denomina SPF (Seasonal Perfomance Factor) en terminología anglosajona. Es con este factor con el que se deben de comparar los gastos de funcionamiento de las diferentes alternativas de calefacción.

2.8.Aplicaciones de la bomba de calor en diversos sectores (ASHRAE, 2009).

2.8.1. Bombas de calor aire-aire.

Es la aplicación más habitual. Se suelen utilizar unidades de baja potencia, que se destinan a la calefacción y refrigeración de viviendas. El equipo está en contacto con el exterior del edificio, de donde extrae el calor y también con el aire interior de la vivienda, a la que cede el calor. Éste será distribuido mediante una red de conductos por todas las habitaciones.

Si la unidad es compacta, el equipo integra todos los componentes en una sola unidad. La batería exterior irá en contacto con el ambiente exterior y la unidad interior estará conectada a la red de conductos, que distribuyen el aire por el interior de la vivienda.

Si se utiliza un equipo dividido, ambas unidades, la interior y la exterior irán conectadas mediante tuberías aisladas, por las que circulará el refrigerante. La unidad exterior irá colocada en el exterior de la vivienda, por ejemplo en la terraza, jardín, etc. La unidad o unidades interiores pueden estar visibles o bien ir situadas en el cielo raso.

2.8.2. Bombas de calor aire-agua.

En este caso, el equipo extrae el calor del aire exterior y lo transfiere a los locales a través de un circuito de agua a baja temperatura.

2.8.3. Bombas de calor agua-agua.

Utilizan como fuente de calor el agua superficial de ríos, lagos, etc. o agua subterránea. La temperatura de estas fuentes es prácticamente constante durante toda la estación de calefacción, lo que permite mantener un COP constante y elevado durante toda la temporada. Como en el caso anterior, la distribución se hace mediante sistemas a baja temperatura.

2.8.4. Bombas de calor agua-aire.

Requieren también la disponibilidad de una fuente de calor, agua subterránea, superficial, etc. La distribución se calor se realiza mediante una red de conductos a todas las dependencias de la vivienda.

2.8.5. Bombas de calor tierra-agua.

Aprovechan la energía solar acumulada en el terreno como fuente de calor. Este calor es extraído por el aparato a través de un circuito enterrado de agua con glicol. La complejidad de la instalación y la necesidad de disponer de una superficie de terreno grande, hacen que la inversión sea elevada, por lo que esta aplicación es más propia de zonas con temperaturas exteriores rigurosas, donde los equipos condensados por aire no son adecuados.

Un ejemplo práctico para este tipo de equipos, se ve con mucha frecuencia en Islandia, donde las temperaturas son bajas, pero al mismo tiempo, por ser un país volcánico, aprovecha toda la temperatura que se encuentra en la tierra para proveer de calefacción y de agua caliente a ciertas comunidades, como la planta geotérmica de Nesjavellir, que da servicio a las necesidades de agua caliente del área metropolitana del Gran Reykjavík.

La utilización de la bomba de calor para proporcionar calefacción, refrigeración y agua caliente sanitaria en viviendas, es una aplicación ampliamente difundida en el mundo. La vasta mayoría de los equipos existentes en el mercado mundial son reversibles, pudiendo trabajar en dos ciclos: calefacción en invierno y refrigeración en verano. Por esta razón estos equipos están especialmente indicados para situaciones en las que se prevea demanda de calefacción y refrigeración, ya que con un incremento en el precio, se pueden cubrir ambas necesidades con el mismo aparato. La gama de potencias comercializada es lo suficientemente amplia como para cubrir las necesidades de cualquier vivienda.

En la siguiente figura se representa el funcionamiento de ambos ciclos en una bomba de calor aire-aire.

Fig. 2.2. Funcionamiento de una bomba de calor aire-aire reversible.

2.9. Problemática asociada a los refrigerantes.

En el año 1974, Molina y Rowland publicaron en Nature el trabajo "Stratospheric sink for chlorofluoromethanes; chlorine atom catalysed destruction of ozone", que relacionaba la disminución del espesor de la capa de ozono atmosférico con la acción catalítica de las moléculas de determinados compuestos halogenados derivados de hidrocarburos saturados.

La tierra recibe energía del sol en forma de radiaciones de distinta longitud de onda. Antes de alcanzar la superficie del planeta, estas radiaciones deben atravesar la atmósfera. La capa de ozono sirve como filtro natural de los rayos ultravioleta del sol, actuando como un escudo protector. Cuando estos compuestos alcanzan la estratósfera, zona más exterior de la atmósfera, quedan sometidos a las radiaciones solares ultravioletas, descomponiéndose y liberando átomos de cloro. Tras una serie de reacciones químicas complejas, el cloro destruye las moléculas de ozono. Por esta razón, una mayor cantidad de radiación ultravioleta corta alcanza la superficie de la tierra.

Uno de los compuestos halogenados derivados de hidrocarburos saturados causante de este efecto son los CFC's conocidos como clorofluorocarbonos. Los CFC's fueron desarrollados en 1930 como fluidos de trabajo para sistemas frigoríficos de compresión mecánica. Aunque comenzaron como refrigerantes, luego se emplearon en otros usos como aerosoles, aislamientos, industria química entre otros, por lo que su uso en aire acondicionado representa sólo una parte de sus aplicaciones.

Además de los CFC's existen otros fluidos de trabajo derivados de los hidrocarburos saturados que se utilizan en instalaciones de aire acondicionado. Se obtienen al sustituir de algunos átomos de hidrógeno por otros de flúor y cloro, y se les conoce como hidroclorofluorocarbonos o HCFC's. El HCFC más conocido es el R-22. Se les denomina abreviadamente CFC's y HCFC's por las iniciales de sus componentes (cloro-flúor-carbono) e (hidrógeno-cloro-flúor-carbono).

La destrucción de la capa de ozono debido a los refrigerantes, depende directamente del contenido de cloro en éstos. Para evaluar la capacidad de destrucción de ozono en términos cuantitativos, se recurre al índice adimensional ODP (ozone depleting potencial) o potencial de agotamiento del ozono. Éste expresa el grado máximo en que un gas dado puede provocar la disminución de la capa de ozono. Por convención se da el valor 1 a la capacidad del R-11 para destruir ozono.

En la siguiente tabla se hace una comparación entre diferentes refrigerantes, en relación con el contenido de cloro, ODP y vida media estimada.

Refrigerante	Contenido en cloro	ODP	Vida media estimada (años)
R-11 (CFC)	77,4%	1	60
R-12 (CFC)	58,6%	0,95	130
R-22 (HCFC)	41%	0,05	15
R-134-a (HFC)	0	0	16

 Tabla 2.1. Contenido de cloro, ODP y vida estimada para diferentes refrigerantes.

Los CFC's tienen una vida media atmosférica muy larga, lo que les permite conservar su estructura molecular intacta hasta que alcanzan la estratosfera al cabo de tres a cinco años después de su emisión. Los HCFC's tienen una vida media atmosférica más corta que los CFC's, por lo que su capacidad de destrucción es menor. Sólo una pequeña parte de las moléculas de HCFC's descargadas a la atmósfera alcanzan la estratósfera y contribuyen a la destrucción del ozono, de la misma manera

que lo hacen los CFC's. Los HCFC's tiene una incidencia hasta 20 veces menor que el R-11.

Al detectarse las implicaciones de estos productos como modificadores del medio ambiente, se decidió a nivel mundial eliminarlos y sustituirlos por otros de tipo HFC's (hidrógeno-flúor-carbono, sin cloro) semejantes en seguridad y prestaciones pero inocuos para la capa de ozono.

En el año 1980 el programa ambiental de las Naciones Unidas (United Nations environmental programme, UNEP), inició los trabajos de preparación de un convenio internacional con el fin de establecer las líneas generales para una acción internacional con vistas a la protección de la capa de ozono atmosférico.

En el año 1985 se aprobó el Convenio de Viena, para la protección de la capa de ozono. En él se establecieron una serie de mecanismos de investigación y de cooperación, así como la adopción de medidas legislativas, todo ello tendente a proteger la salud humana y el medio ambiente de los efectos adversos resultantes de las modificaciones de la capa de ozono atmosférico.

Poco después de la firma del Convenio de Viena, se iniciaron los trabajos de preparación de un protocolo que regulase las sustancias que aparentemente podían influir sobre la capa de ozono. En 1987 se aprueba el texto, llamado "Protocolo de Montreal relativo a las sustancias que agotan la capa de ozono". El texto deja abierta la posibilidad de ser enmendado en función de sucesivas evidencias científicas que se fuesen obteniendo en relación con el agotamiento del ozono.

Como consecuencia de los resultados de las investigaciones científicas fomentadas por el Protocolo de Montreal, que han contribuido a aumentar el conocimiento del mecanismo de deterioro de la capa de ozono, el número de sustancias reguladas y sus correspondientes calendarios de supresión, se han ido endureciendo en las sucesivas enmiendas del Protocolo de Montreal, Helsinki (1989), Londres (1990), Copenhague (1992) y Bangkok (1993).

La Comunidad Europea ha pretendido impulsar medidas más restrictivas que las del Protocolo de Montreal en lo relativo al control de las sustancias que agotan la capa de ozono. El Consejo de la Unión Europea aprobó entre otros, el Reglamento 3093/94, relativo a las sustancias que agotan la capa de ozono, que fija el calendario aplicable a estas sustancias.

2.10. Refrigerantes (ASHRAE, 2009).

La evolución de la bomba de calor en los próximos años dependerá en gran medida de la evolución de los fluidos refrigerantes. Los refrigerantes artificiales, organoclorados, necesarios en el ciclo frigorífico base de un sistema de climatización, están condenados a desaparecer debido a que contribuyen a la reducción de la capa de ozono, en presencia de vapor de agua y son gases con efecto invernadero por sí. Los refrigerantes artificiales tienen una triple acción sobre el medio ambiente: los CFC's, y en menor medida los HCFC's, atacan a la capa de ozono; los CFC's, HCFC's y HFC's contribuyen directamente al aumento del efecto invernadero; indirectamente, por el consumo eléctrico y su producción de CO₂, lo que da importancia al rendimiento que se consigue con los distintos refrigerantes. La sustitución de los refrigerantes por otros debe mantener o superar las eficiencias de los ciclos.

Actualmente existen proyectos que se han venido desarrollando desde hace un poco más de una década, en busca de la mejor alternativa para el reemplazo de los refrigerantes dañinos a la capa de ozono. Hasta ahora, los avances se han visto un poco opacados por la resistencia al cambio, pero gracias a los diversos acuerdos globales y legales, se espera que esto cambie. Algunas de las propuestas son las que se presentan a continuación.

2.10.1. HCFC's.

El primer paso para evitar la destrucción de la capa de ozono fue la sustitución de los fluorocarbonados con dos átomos de cloro (CFC) por fluorocarbonados con un átomo de cloro y otro de hidrógeno (HCFC). Estos refrigerantes contribuyen en menor

medida a la destrucción de la capa de ozono por su mayor estabilidad, pero influyen en el calentamiento global en mayor medida que éstos. Sin embargo, en la última revisión del protocolo de Montreal, los HCFC's fueron también incluidos en la lista de sustancias controladas, y se decidió detener su fabricación en el año 2020 con la completa desaparición en el año 2030. Estados Unidos está considerando tomar medidas de este tipo. El R-22 es una solución intermedia y se usa para remplazar el R-12, R-500 y R-502 en algunas aplicaciones. Para reemplazar el R-114 en procesos industriales a alta temperatura se recurre a los siguientes HCFC's: R-124, R-123 y R-141b.

2.10.2. HCF'S.

Los HFC's son fluidos refrigerantes sin cloro, y por tanto sin repercusiones dañinas en la capa de ozono, pero algunos de ellos tienen un impacto importante sobre el efecto invernadero. Con la sustitución de refrigerante se pierde eficacia, pero el COP no se reduce significativamente. Además debe ser utilizado con lubricantes de poliol-éster debido a que es muy higroscópico. Por otra parte, cuando se utilice para llenar circuitos existentes, se deben extremar las precauciones durante la limpieza de los mismos. Los fluidos de ese grupo son el R-134a, R-152a, R-32, R-125 y R-143a.

2.10.3. Mezclas.

Las mezclas constituyen una importante posibilidad para la sustitución de los CFC's, tanto para su utilización en bombas de calor nuevas como en las ya existentes. Una mezcla está constituida por dos o más fluidos refrigerantes y puede ser:

- a) Zeotrópica.
- **b**) Azeotrópica.
- c) Cuasi-zeotrópica.

Las mezclas azeotrópicas evaporan y condensan a temperatura constante, mientras que las otras lo hacen en un rango de temperatura (deslizamiento). El deslizamiento puede ser utilizado para mejorar la eficiencia pero requiere la modificación del equipo. La ventaja de estas mezclas es que pueden cambiar sus propiedades en función de las necesidades de cada aplicación variando la proporción entre los componentes. Las mezclas no azeotrópicas presentan problemas por diferente volatilidad de sus componentes. En caso de fugas no se puede saber qué cantidad de cada uno de los refrigerantes que componen la mezcla se ha perdido, por lo que es necesario llenar el circuito de nuevo con la carga total de refrigerante. La nueva generación de mezclas para reemplazar al R-502 y R-22 no tienen cloro y están hechas principalmente de HFC's e hidrocarburos. Entre ellas se encuentran el R-404a, R-407 y el R-410.

2.10.4. Fluidos de trabajo naturales.

Los fluidos de trabajo naturales son sustancias que existen en la biósfera de una forma natural. Generalmente tienen muy pocos inconvenientes en relación al medio ambiente (los potenciales de destrucción de la capa de ozono y de calentamiento global son nulos o despreciables). Por lo tanto, son alternativas a largo plazo a los CFC's. Ejemplos de fluidos de trabajo naturales son el amoniaco (NH₃), hidrocarburos (ej. propano), dióxido de carbono (CO₂), aire y agua. Algunos de los fluidos de trabajo naturales son inflamables o tóxicos. Las implicaciones de seguridad del uso de dichos fluidos pueden requerir el diseño de un sistema específico y unas rutinas de operación y mantenimiento adecuadas.

2.10.5. El amoniaco (NH₃).

En muchos países es el fluido de trabajo principal en refrigeración media y alta, y en plantas de almacenamiento en frío. Han sido desarrollados códigos, regulaciones

y leyes principalmente para tratar con las características tóxicas, y de alguna manera con las características inflamables del amoniaco.

El amoniaco podría ser también considerado en sistemas pequeños, mayoritarios en el mercado de las bombas de calor. En sistemas pequeños, los aspectos de seguridad pueden ser tratados usando equipos con baja carga de fluido de trabajo y medidas tales como sistemas de distribución indirecta (con salmuera), alojamientos o revestimientos a prueba de gas, y ventilación a prueba de fallos. El cobre no es compatible con el amoniaco, con lo que todos los componentes deben ser de acero.

El amoniaco no se usa aún en bombas de calor industriales de alta temperatura, pues normalmente no hay disponibles compresores adecuados de alta presión (40 bar máximo). Si se desarrollan compresores eficientes de alta presión, el amoniaco será un excelente fluido de trabajo a alta temperatura.

2.10.6. Los hidrocarburos (HC's).

Son fluidos de trabajo inflamables, con propiedades termodinámicas conocidas y compatibilidad de material. Están formados por propano, butano y sus mezclas. Son utilizados en gran medida en la industria del petróleo, esporádicamente aplicados en la refrigeración del transporte, refrigeradores/congeladores domésticos, y bombas de calor recientes (Alemania).

Debido a su alta inflamabilidad, los hidrocarburos únicamente deberían ser utilizados para llenar circuitos existentes o aplicados en sistemas con baja carga de fluido de trabajo.

Para garantizar la seguridad necesaria durante la operación y el servicio, deberían tomarse precauciones como sistemas de ventilación a prueba de fallos, adición de gas odorizante al fluido de trabajo, uso de detectores de gas etc.

2.10.7. El agua.

Es un excelente fluido de trabajo para las bombas de calor industriales de alta temperatura debido a sus propiedades termodinámicas favorables y al hecho de que no es ni inflamable ni tóxico. El agua ha sido usada principalmente como fluido de trabajo en sistemas MVR (mechanical vapor recompression), abiertos y semi-abiertos, pero también existen algunas bombas de calor de ciclo de compresión cerrado que usan agua como fluido de trabajo. La mayor desventaja del agua como fluido de trabajo que requiere compresores grandes y caros, especialmente a bajas temperaturas.

2.11. Dióxido de carbono (CO₂).

Es una sustancia natural que juega un papel importante en muchos procesos naturales e industriales. Cuando se utiliza como refrigerante, se le conoce como R-744. El dióxido de carbono se utiliza como hielo seco para refrigeración en el transporte, generando el efecto de brillo en algunas bebidas, y como una protección.

Es inodoro, no inflamable, ni tóxico, pero si aumenta la concentración de dióxido de carbono por encima del nivel natural que existe en el aire atmosférico, causaría una elevación en el ritmo de la respiración humana, conllevando a algunos problemas. Es más pesado que el aire, por lo que las concentraciones más altas generalmente se encontrarán cerca del suelo.

Su uso data desde 1867, cuando se utilizó por primera vez en un ciclo de compresión de vapor; más tarde fue dejado al olvido por la aparición del primer CFC, el R-11, el cual al ser comparado con el CO_2 en cuanto a propiedades termodinámicas, era la opción a elegir. En 1974, luego de la publicación de Molina y Rowland, el mundo de las sustancias cloradas se vino abajo, atrayendo cada vez más y más científicos a buscar alternativas ecológicas que fueran igual de efectivas, volviendo así el CO_2 a la escena. Esta vez con grandes avances tecnológicos, cuyo campo aún se encuentra en investigación.

2.11.1. Diagrama de fases del CO₂.

La figura que se presenta a continuación muestra el bien conocido diagrama de fases, con sus tres fases: sólido, líquido y vapor. Un cambio de fase ocurre cuando algún proceso cruza la frontera entre alguna de estas regiones, como por ejemplo la evaporación o la condensación de un proceso, que no es más que el pasar por la línea de líquido y vapor en el diagrama de fases. En estas líneas, las fases en cuestión coexisten en equilibrio, y sus propiedades, tales como la temperatura y la presión, se vuelven dependientes.

Fig. 2.3. Diagrama de fases para refrigerante R-744.

Fuente: Articulo de la empresa Danfoss (Danfoss, 2008)

Dos puntos importantes están señalados en la figura, el punto triple y el punto crítico. El punto triple representa la condición donde las tres fases coexisten en equilibrio. A temperaturas por debajo del punto triple, no puede existir líquido, por lo que, la temperatura del punto triple establece el límite inferior para cualquier proceso de transferencia de calor basado en la condensación o la evaporación. En el otro extremo de la línea de vapor, el punto crítico establece el límite superior para procesos de transferencia de calor basado en la condensación o evaporación.

A temperaturas y/o presiones por encima de las del punto crítico, no se puede establecer una distinción clara entre las fases. Por lo tanto, existe una región que se extiende indefinidamente por encima y a la derecha del punto crítico, que suele llamarse región supercrítica del fluido. Esta región, está delimitada en la figura por líneas discontinuas, que no representan cambio de fase alguno, pero conforman definiciones que pueden llamarse "arbitrarias" de lo que se considera líquido y lo que se considera vapor. A un fluido cuya presión y temperatura, se encuentre en esta zona, se le suele llamar fluido supercrítico. Todas las sustancias poseen un punto triple y un punto crítico, aunque para la mayoría de las sustancias usadas en la refrigeración, estos puntos se encuentran fuera de la región en la que generalmente son usados.

2.12. Fluido supercrítico y la introducción a los ciclos transcríticos (Cavallini, 2007).

El término "punto crítico" ha sido causante de muchos malentendidos, debido a que en muchas actividades de la ingeniería, la palabra "crítico" es usualmente usada en el sentido de peligro, o de serias consecuencias. Su uso para describir un punto específico del estado de una sustancia puede entonces ser incorrectamente asociado al uso de la sustancia en si en condiciones cercanas a este punto con una peligrosidad específica. En vez de esto, el término "crítico" debería ser interpretado como la dificultad que se presenta a la hora de distinguir entre condiciones de líquido o vapor, en este punto o sus alrededores.

La tabla 2.2 compara la presión crítica y la temperatura crítica de algunos fluidos usados en la industria de la refrigeración. Típicamente, los refrigerantes tienen

temperaturas críticas que están por encima de los 90°C, pero otros usados actualmente, tienen temperaturas críticas por debajo de ésta.

Refrigerante	Presión crítica [bar]	Temperatura crítica [°C]
R-22	49,9	96,1
R-134 ^a	40,6	101,1
R-404a	37,3	72,0
R-410a	49,0	71,4
R-600a (isobutano)	36,4	134,7
R-717 (amoniaco)	113,3	132,3
R-744 (CO ₂)	73,8	31,0

Tabla 2.2. Propiedades críticas de algunos refrigerantes seleccionados.

Para el R-134a la temperatura crítica es de 101,1°C, esto significa que para obtener un proceso de rechazo de calor por condensación, la temperatura debería alcanzar valores mayores al mencionado anteriormente. Esta temperatura es mayor a la necesaria para el rechazo de calor a la atmósfera en casi todas las aplicaciones de la refrigeración hoy en día.

En el R-744 la temperatura critica es de solo 31,0°C y para muchas aplicaciones de la refrigeración, la temperatura ambiente casi siempre sobrepasará los 25°C, haciendo casi imposible la transferencia de calor por condensación entre el R-744 y la atmósfera. Sin embargo, esto no significa que el CO_2 no pueda ser usado como

refrigerante en estas aplicaciones. El R-744 sí puede ser usado, pero el proceso de rechazo de calor debe ser trabajado como un proceso distinto al de condensación.

Hasta este punto, sólo se ha hablado de bombas de calor en estado subcrítico (siendo esto implícito). En la figura 2.4, se muestran dos ciclos de refrigeración, uno donde la presión en todas las partes del proceso se mantienen por debajo de la presión crítica, y otra donde la presión durante el proceso de rechazo de calor se encuentra por encima de este punto.

Entalpia específica

Entalpia específica

Fig. 2.4. Ciclos de refrigeración subcrítico y transcrítico. Fuente: Articulo de la empresa Danfoss (Danfoss, 2008)

Como la presión en todas las partes del diagrama de la izquierda se mantiene por debajo del punto crítico, es llamado ciclo subcrítico y es el más común que se conoce; en él está basada la mayoría de las aplicaciones de refrigeración en la actualidad. Cuando parte del ciclo ocurre a presiones por encima del punto crítico y otras por debajo, el proceso es llamado ciclo transcrítico.

La terminología usada para describir los procesos y sus componentes son casi iguales para los dos ciclos, excepto en la parte de condesación. En el ciclo transcrítico, este proceso se lleva a cabo en la región supercrítica, el fluido se considera a menudo en una condición de gas. Para el proceso transcrítico, la condensación se denomina enfriamiento del gas y por tanto el intercambiador de calor utilizado es llamado un enfriador de gas. La figura 2.5 muestra un diagrama más detallado de presión-entalpía para un proceso simple de un ciclo con una sola etapa transcrítica. El punto crítico está marcado en la figura en color amarillo; el color se utiliza para indicar las fases y las transiciones entre ellas. La región de fluidos supercríticos (gas) es de color verde claro y los componentes del sistema han sido incluidos en la misma y van cambiando de color de acuerdo con el cambio de estado del refrigerante cuando pasa por ellos.

Fig. 2.5. Diagrama del ciclo transcrítico.

Fuente: Articulo de la empresa Danfoss (Danfoss, 2008)

Capitulo 2. Marco teórico.

El proceso del ciclo transcrítico comienza con una compresión de una sola etapa desde el punto 1 a 2. Durante el proceso, la temperatura aumenta de manera significativa (para el dióxido de carbono, puede alcanzar niveles de hasta 130 °C). Luego ocurre el enfriamiento del gas (del punto 2 al 3), el cual se produce a presión constante por encima del punto crítico. La temperatura durante este proceso varía de forma continua a partir de la entrada (punto 2) hasta la salida (punto 3). El proceso continúa con la expansión desde el punto 3 al 4, el cual ocurre a entalpía específica constante, donde el estado del refrigerante a la entrada es supercrítico y a la salida se encuentra en estado bifásico (mezcla de líquido y vapor). Por último, se tiene la absorción de calor desde el punto 4 al 1 que ocurre a una presión menor; en la parte evaporativa de este proceso, se trabaja a temperatura constante. La condición de salida, al igual que la condición de entrada del compresor, es estado ligeramente sobrecalentado.

El flujo de calor y el trabajo están marcados en la figura con flechas. El intercambio o transferencia de calor en el evaporador es Q_E y el consumo de potencia del compresor es W, la transferencia de calor en el enfriador de gas es Q_{GC} y lo ideal sería que el balance de energía sea $Q_{GC} = Q_E + W$.

La figura 2.6 muestra un diagrama de presión-entalpía para un ciclo transcrítico simple, especificando que el proceso de evaporación se realiza del mismo modo que para los procesos subcríticos, utilizando la temperatura de evaporación y recalentamiento. La isoterma T_E representa la temperatura de evaporación. Para el ciclo transcrítico, no existe un proceso de condensación y por consiguiente los términos de temperatura de condensación y subenfriamiento no se aplican. En cambio, las condiciones de salida del enfriador de gas en el punto 3 deben ser especificadas directamente mediante temperatura y presión. La isoterma $T_{GC,out}$ representa la temperatura del refrigerante después de la condensación.

Fig. 2.6. Diagrama presión-entalpía de un ciclo de refrigeración transcrítico.

Fuente: Articulo de la empresa Danfoss (Danfoss, 2008)

Además de especificar $T_{GC,out}$, la de presión del enfriador de gas P_{GC} también debe especificarse. La intersección entre la isoterma $T_{GC,out}$ y la isóbara P_{GC} identifica la condición de salida (punto de estado 3).

Este tipo de ciclo de refrigeración es menos eficiente que los ciclos subcríticos para aplicaciones de refrigeración o acondicionamiento de aire. El *COP* en los sistemas transcríticos muestra una dependencia con la temperatura y presión de descarga del enfriador de gas, lo que hace que sea sensible a la temperatura ambiental, y a medida que ésta aumenta, la eficiencia del ciclo disminuye. Para mejorar la eficiencia o *COP*

de este tipo de sistemas y ser capaz de reemplazar a los sistemas que se usan actualmente, es necesario hacerle modificaciones al ciclo estándar o simple.

Una de las posibles opciones para lograr dicha mejora, es incluir en la configuración del ciclo un intercambiador de calor interno que disminuya la temperatura del refrigerante a alta presión al salir del enfriador de gas, antes de entrar a la válvula de expansión, y eleve su temperatura antes de entrar al compresor, de forma que requiera menos trabajo para elevar la presión del fluido a la presión de alta del sistema. Se recomienda que este tipo de intercambiador de calor interno sea en contracorriente o de tubo coaxial.

Cuando se trata de calentadores, a diferencia de aplicaciones de enfriamiento, este tipo de ciclo se comporta de manera más eficiente, siendo su aplicación en la actualidad más común, los calentadores de agua. Esto se debe que es mayor el calor que transfiere el fluido cuando se encuentra en estado supercrítico en el enfriador de gas que cuando se encuentra en estado subcrítico en el evaporador, dejando ver que al estudiar la relación de este parámetro con el trabajo que realiza el compresor resulta más eficiente que cuando se está enfriando el aire.

El CO₂ presenta varias características a nivel físico y termodinámico que lo diferencian de los demás refrigerantes, una de ellas es que como el fluido trabaja a presiones altas su densidad es mayor, lo que quiere decir que el volumen para una masa requerida es menor que el volumen que puede requerir los refrigerantes actuales, siendo éstos menos densos. Esto se transforma en compresores de menor tamaño o cilindrada, que a su vez son más eficientes. El CO₂ por otra parte, permite una mejor transferencia de calor porque presenta una menor tensión superficial y se caracteriza por tener una capacidad calórica alta a las presiones que trabaja el ciclo transcrítico.

CAPÍTULO 3

Marco metodológico.

3.1. Nivel de investigación.

El proyecto a desarrollar se puede clasificar como una investigación exploratoria, ya que estudia el comportamiento del CO_2 como refrigerante en un ciclo de refrigeración transcrítico partiendo de datos netamente teóricos y llevando a cabo un diseño termodinámico teórico para poder ser comparado con los refrigerantes que se usan comúnmente.

Hay que mencionar también que, dada las características que presenta el contenido, este trabajo se encuentra dentro de diversos tipos de investigación. En este orden de ideas se plantea que corresponde a un proyecto factible, ya que consiste en la investigación, elaboración y desarrollo de una propuesta de un modelo óptimo viable, o una solución posible a un problema práctico, como lo es el alto consumo de energía en los sistemas de aire acondicionado; además, su ejecución requiere de análisis y conclusiones sobre la viabilidad y realización del proyecto cuyo estudio y diseño está orientado a aprovechar una oportunidad de mejora en el área de gestión de la energía, así como también de la generación de una tecnología propia en el país. De igual manera, se puede afirmar que es una investigación "descriptiva correlacional", ya que se pretende obtener el comportamiento del refrigerante en el ciclo transcrítico tomando en cuenta las distintas variables que ejercen influencia en su diseño (cargas térmicas asociadas, materiales, aislantes) y funcionamiento (ambiente).

Finalmente, el estudio puede ser considerado de campo, ya que se consideraron una serie de factores ambientales bajo los cuales se realizaron los cálculos de diseño. En este sentido, se puede afirmar que son los datos primarios obtenidos a través del diseño de campo, los esenciales para el logro de los objetivos planteados y la solución de la situación problemática.

3.2.Diseño de la investigación.

Para lograr cumplir los objetivos planteados en este proyecto es importante realizar una investigación documental, donde los datos e información necesaria (propiedades termodinámicas del refrigerante, propiedades de los materiales presentes, entre otras) deben tomarse de datos teóricos como tablas termodinámicas y diagramas de presión-entalpía de los refrigerantes, e información recopilada de otros trabajos, además de catálogos a la hora de seleccionar el equipamiento necesario.

3.2.1. Comparación entre el CO₂ y los refrigerantes convencionales.

En esta etapa se busca evaluar el CO_2 transcrítico y los refrigerantes comunes mediante un ciclo de refrigeración simple de forma teórica, para comparar la potencia consumida y la eficiencia del ciclo. Por esto es necesario usar las leyes de la termodinámica aplicadas a un sistema de refrigeración.

3.2.2. Diseño de los componentes principales del equipo de refrigeración transcrítico para el CO₂ como refrigerante.

Se deben diseñar los intercambiadores de calor (enfriador de gas y evaporador) como un banco de tubos con aletas anulares, usando correlaciones presentes en trabajos anteriores que han probado ser eficientes a la hora de deducir los parámetros de diseño. También es importante tomar en cuenta los materiales y sus propiedades tanto para cálculos de diseño como para verificar que exista armonía entre el equipo y el CO₂, el cual se encuentra en estados subcrítico y supercrítico.

3.2.3. Selección del compresor, válvula de expansión compatibles con el CO₂.

Según catálogos de compresores y válvulas de expansión, y con ayuda de trabajos existentes acerca de este campo, es necesario seleccionar los elementos que sean compatibles con el CO_2 para trabajar en un equipo de refrigeración transcrítico.

3.3. Técnicas e instrumentos para obtención de datos.

Todos los datos para este proyecto se obtendrán de forma teórica partiendo de tablas termodinámicas, diagramas de presión-entalpía, ecuaciones básicas y modelos matemáticos para el ciclo de refrigeración y cálculos de transferencia de calor en el diseño de los intercambiadores de calor.

3.4. Metodología de cálculo.

A continuación se presentan los procedimientos para el desarrollo y elaboración de los diferentes cálculos del presente trabajo, los cuales son necesarios para cumplir con los objetivos.

3.4.1. Propiedades termodinámicas de los refrigerantes

Se deben obtener las propiedades termofísicas del fluido refrigerante, específicamente la entalpía a las temperaturas y presiones de operación establecidas con ayuda de las tablas termodinámicas y diagramas P-h de los fluidos, necesarias para los cálculos referentes a los ciclos de refrigeración de compresión de vapor, como es el caso del COP para el ciclo con R-134a, R-404a, R-410a y con CO₂, que permitieron una comparación desde un punto de vista termodinámico entre el CO₂ y los refrigerantes más comunes para aplicaciones de refrigeración. Las condiciones para la evaluación de los fluidos están definidas para una situación de acondicionamiento de ambiente, donde se requiere una temperatura baja de 20 °C y para la temperatura de alta, se tomó una temperatura ambiente, de 30 °C. Partiendo de estos parámetros y un $\Delta T_{dise\,\tilde{n}o}$ de 10 °C para el evaporador, el enfriador de gas y el condensador, se pueden estimar las condiciones a las que se evaluaron los refrigerantes y el aire, fluido con el que se presenta el intercambio de calor mediante los evaporadores, el enfriador de gas para el CO₂ y condensador para el resto de los refrigerantes.

3.4.2. Condiciones de evaluación del R-134a, R-404a y R-410.

Según lo establecido anteriormente, para que el aire en el ambiente esté a 20 °C con un $\Delta T_{dise\,\tilde{n}o}$ de 10 °C, el refrigerante debe estar en el evaporador en estado de mezcla a una T_{sat} de 10 °C, y haciendo la suposición de forma teórica, que sale del evaporador como vapor saturado a la temperatura antes mencionada, se define el Pto. 1, obteniendo de la tabla termodinámica de fluido saturado (ASHRAE, 2009) para cada uno de los refrigerantes, el valor de h_I en el ciclo de refrigeración a evaluar.

Para obtener las propiedades del refrigerante en el Pto. 2, es decir, h_2 , se parte de la teoría de los ciclos de refrigeración y suponiendo que el compresor, ubicado a la salida del evaporador, posee una eficiencia igual a 1, aumenta la presión y por consiguiente la temperatura del fluido, de manera isentrópica lo cual permite calcular las condiciones del fluido a la entrada del condensador. Para obtener las propiedades del refrigerante en este punto se entra a la tabla termodinámica de fluido saturado para cada uno de los refrigerantes (ASHRAE, 2009) con la P_{sat} a la temperatura de 40 °C y s_1 , ya que como se dijo anteriormente, el compresor aumenta la presión y temperatura del fluido de forma isentrópica, lo que quiere decir que la entropía en el Pto. 1 es igual a del Pto. 2. El fluido ingresa al condensador como vapor sobrecalentado bajando de temperatura a presión constante para luego entrar en estado de mezcla condensando a T_{sat} de 40 °C, existiendo el intercambio de calor con el aire del ambiente que se encuentra a 30 °C con un $\Delta T_{dise no}$ de 10 °C.

Para conseguir las propiedades del refrigerante en el Pto. 3, se parte de la suposición teórica de que el fluido sale del condensador como líquido saturado, lo que quiere decir que h_3 es igual a h_f a T_{sat} de 40 °C.

En el Pto. 4, la entalpía es igual a h_3 ya que el fluido al pasar por la válvula de expansión disminuye su presión y temperatura de forma isoentálpica, entrando en mezcla a T_{sat} de 10 °C al evaporador y saliendo como vapor saturado para completar el ciclo de refrigeración de compresión de vapor.

3.4.3. Condiciones de evaluación del CO₂.

De la misma forma que se obtuvieron las propiedades del R-134a se determinaron las condiciones del CO₂. Para el Pto. 1, es decir, para que el aire en el ambiente esté a 20 °C con un $\Delta T_{dise \tilde{n}o}$ de 10 °C y, el CO₂ debe estar en el evaporador en estado de mezcla a una T_{sat} de 10 °C, y haciendo la suposición teórica que sale del evaporador como vapor saturado a la temperatura antes mencionada, se define el Pto. 1, obteniendo con la ayuda del diagrama P-h (ASHRAE, 2009) el valor de h_1 en el ciclo de refrigeración a evaluar.

Las condiciones del Pto. 2, a diferencia de los otros refrigerantes, el CO₂ se encuentra en estado supercrítico, por lo que el fluido no condensa sino que se enfría, variando su temperatura durante el proceso. Las condiciones del refrigerante a la entrada del enfriador de gas se obtuvieron de forma gráfica usando el diagrama P-h del CO₂ (ASHRAE, 2009), donde a entropía constante se sube hasta la presión de 10 MPa, presión que se usa normalmente en sistemas de refrigeración transcríticos con CO₂ (Taira *et al.*, 2010), obteniendo así la temperatura y entalpía del fluido h_2 cuando entra al enfriador de gas.

El Pto. 3 carece de la referencia de la línea de liquido saturado por estar por encima del punto crítico del fluido, de aquí, se supuso que el fluido sale a la temperatura de 40 °C para asegurar que exista en todo momento transferencia de calor entre el refrigerante y el aire del ambiente que se encuentra a 30 °C con un ΔT de 10° C. Al igual que en el Pto. 2, en este punto se determinaron las propiedades del fluido de forma gráfica con ayuda del diagrama P-h del CO₂ (ASHRAE, 2009), entrando con presión de 10 MPa y 40 °C de temperatura y así obtener $h_{3.}$

El Pto. 4, posee la misma entalpía que en el Pto. 3, ya que el refrigerante también disminuye su presión y temperatura de forma isoentálpica mediante una válvula de expansión.

3.4.4. Cálculo de masa de refrigerante, potencia consumida por el compresor y eficiencia o COP.

Para estimar la masa de refrigerante, eficiencia o COP y potencia consumida por el compresor para cierta carga térmica en el ciclo de refrigeración se usaron las ecuaciones siguientes.

• Primera ley de la termodinámica aplicada al evaporador:

$$Q_o = \dot{m}_{ref} \,.\, (h_1 - h_4) \tag{3.1}$$

Donde:

 \dot{Q}_o : Carga térmica.

 \dot{m}_{ref} : Flujo másico de refrigerante.

 h_1 : Entalpía del refrigerante a la salida del evaporador.

 h_4 : Entalpía del refrigerante a la entrada del evaporador.

• Primera ley de la termodinámica en el compresor:

$$\dot{W} = \dot{m}_{ref} \cdot (h_2 - h_1)$$
 (3.2)

Donde:

 \dot{W} : Potencia consumida por el compresor.

 h_2 : Entalpía del refrigerante a la salida del compresor.

• Cálculo del COP:

$$COP = \frac{\dot{Q}_o}{\dot{W}} \tag{3.3}$$

Donde:

COP : Coeficiente de desempeño.

3.4.5. Diseño de los principales componentes del equipo.

Se diseñaron los elementos principales que constituyen los sistemas de refrigeración que trabajan con los cuatro refrigerantes que se comparan en este trabajo, que vienen siendo el R-134a, R-404a, R-410a y el CO_2 , donde estos elementos son el evaporador para los cuatro casos, enfriador de gas en el caso del CO_2 y el condensador para el resto de los refrigerantes.

Para el diseño de estos intercambiadores de calor, que por su aplicación es recomendada una configuración de banco de tubos aleteados, es necesario primero obtener ciertas propiedades de los fluidos a unas condiciones definidas para poder realizar los cálculos de diseño. Estas propiedades, por tratarse de un fluido con una viscosidad que se considera baja, se calcularon a una temperatura media aritmética entre la temperatura de entrada del intercambiador de calor y la salida del mismo (Kern, 1999), es decir:

$$T = \frac{T_e + T_s}{2} \tag{3.4}$$

Donde:

T: Temperatura a la que se debe evaluar el fluido.

 T_e : Temperatura de entrada del fluido al intercambiador de calor.

 T_s : Temperatura de salida del fluido al intercambiador de calor.

Con la temperatura calculada y la presión a la que se encuentra el fluido, se pueden calcular las propiedades termofísicas que se requieren para el diseño de los intercambiadores de calor en las tablas de propiedades de los fluidos.

3.4.6. Diseño del evaporador (CO₂, R-134a, R-404a, R-410a).

Ya obtenidas las propiedades de los fluidos a las condiciones establecidas, se procedió al cálculo del área de transferencia de calor que requiere el evaporador para cumplir la exigencia de la carga térmica o flujo de calor que se requiere.

El procedimiento de diseño es el mismo para los cuatro refrigerantes ya que todos se encuentran a las mismas condiciones, estando el fluido en el evaporador en estado de líquido - vapor. El diseño contempla el cálculo de las resistencias térmicas por convección del fluido refrigerante que está dentro de los tubos bajo condiciones de ebullición forzada, y la del aire que está por afuera de los tubos, además de la resistencia térmica por conducción que ofrece el material de los tubos y aletas, que en este caso se usó el cobre. Teniendo estos valores disponibles, se calculó el coeficiente global de trasferencia de calor, y por último el área que debe tener el intercambiador de calor de acuerdo a la carga térmica que se desee.

El procedimiento seguido para el diseño de los evaporadores es el siguiente, comenzando por los cálculos con el refrigerante dentro de los tubos:

 Se calcula la masa de refrigerante que pasa por cada uno de los tubos *m*_{tubo} del intercambiador de calor que se está diseñando, usando el flujo másico de refrigerante del sistema y el número de tubos del equipo. Se obtiene con la siguiente ecuación:

$$\dot{m}_{tubo} = \frac{\dot{m}_{ref}}{n_{tubo}} \tag{3.5}$$

Donde:

 \dot{m}_{ref} : Flujo másico de refrigerante total.

 n_{tubo} : Número de tubos en el intercambiador de calor.

• Con la siguiente ecuación se calcula la velocidad másica superficial que pasa por cada tubo en unidades de $(kg/m^2.s)$

$$G = \frac{\dot{m}_{tub\,o}}{A_{tubo}} \tag{3.6}$$

Donde:

 A_{tubo} : Área transversal donde fluye el refrigerante.

Debido a que el proceso de transferencia de calor en ebullición forzada es un fenómeno complicado en el que intervienen varios patrones de flujo influenciados por la geometría de la superficie donde se produce la ebullición, se ha creado una simplificación que permite obtener resultados aceptables mediante una combinación de dos términos: ebullición nucleada (efecto microconvectivo), h_{bn} , y la ebullición convectiva (efecto macroconvectivo), h_{bc} . La combinación de estos dos mecanismos de transferencia de calor se representa mediante la siguiente expresión:

$$h_{ef} = [(h_{bn})^{\omega} + (h_{bc})^{\omega}]^{1/\omega}$$
(3.7)

En la ec. (3.7), h_{ef} representa el coeficiente de transferencia de calor por ebullición forzada en función de los dos mecanismos. A través del estudio se han

propuesto distintas formas de establecer la transición de uno a otro fenómeno, combinando valores del exponente ω : 1, 2, 3 y ∞ .

Para propósitos prácticos del análisis en la zona de evaporación, se ha considerado la correlación de Chen para el fenómeno de ebullición por convección forzada. En este método Chen fija $\omega = 1$ simplificando la ec. (3.7) y llegando a la siguiente expresión:

$$h_{ef} = h_{bn} + h_{bc} \tag{3.8}$$

Chen notó que el vapor formado durante el proceso de evaporación incrementa la velocidad del líquido y la contribución de la transferencia de calor convectiva tiende a incrementarse continuamente con el flujo bifásico (Chen, 1966). Bajo esta consideración, la ec. (3.7) se expresa mediante la ec. (3.9):

$$h_i = h_{FZ}S + h_LF \tag{3.9}$$

Donde:

S : El factor de supresión de la ebullición nucleada.

F : El factor multiplicativo bifásico.

El coeficiente de ebullición nucleada (término microconvectivo), h_{FZ} , se obtiene a partir de la siguiente correlación (Foster y Zuber, 1974):

$$h_{FZ} = 0,00122 \left[\frac{k_l^{0,79} c_{pl}^{0,45} \rho_l^{0,49}}{\sigma^{0.5} \mu_l^{0,29} h_{fg}^{0,24} \rho_v^{0,24}} \right] \Delta T_{sat}^{0,24} \Delta P_{sat}^{0,75}$$
(3.10)

Donde:

 k_l : Conductividad térmica del fluido evaluada en fase líquida.

 c_{pl} : Capacidad calórica del fluido evaluado en fase líquida.

 ρ_l : Densidad del fluido evaluada en fase líquida.

 σ : Tensión superficial del líquido.

 μ_l : Viscosidad dinámica evaluada en fase líquida.

 h_{fg} : Entalpía de vaporización del fluido.

 ρ_v : Densidad del fluido evaluada en fase de vapor.

El sobrecalentamiento de la pared, ΔT_{sat} , es la diferencia de la temperatura local de la pared interna del tubo, T_w , (como esta temperatura no se puede calcular en este punto, se supone una, y luego por proceso iterativo se recalcula obteniendo el valor real) y la temperatura de saturación local, T_{sat} , es decir:

$$\Delta T_{sat} = T_w - T_{sat} \tag{3.11}$$

La diferencia de la presión, ΔP_{sat} , se obtiene por la presión de vapor del fluido a la temperatura de la pared, P_w , y la presión de saturación, P_{sat} , como se indica en la ec. (3.12):

$$\Delta P_{sat} = P_w - P_{sat} \tag{3.12}$$

Por otro lado, el coeficiente convectivo (término macroconvectivo) de transferencia de calor asociado a la fase líquida h_L , está dado por la correlación (Incropera y De Witt, 1999) mostrado en la ec. (3.13), correlación para la fracción de líquido fluyendo a lo largo del diámetro interno del tubo D_i , para un flujo laminar completamente desarrollado, donde el número de Reynolds en fase líquida (fracción del líquido que circula por el tubo) Re_l , se presenta como ecuación 3.14:

$$h_L = 3,66 \left(\frac{k_l}{D_i}\right) \tag{3.13}$$

Donde:

D_i: Diámetro interno de la tubería.

Para calcular el Reynolds en fase líquida y de vapor se usan las siguientes expresiones:

$$Re_l = \frac{G(1-x)D_i}{\mu_l}$$
 (3.14a)

$$Re_v = \frac{G.x.D_i}{\mu_v}$$
(3.14b)

Donde:

*Re*_{*l*}: Número de Reynolds en fase líquida.

 Re_{v} : Número de Reynolds en fase líquida.

G: Velocidad másica superficial del fluido.

x: Calidad del fluido.

El factor de supresión de la ebullición nucleada, *S*, escrito en la ec. (3.15), toma valores entre 0 y 1 y depende del flujo másico y de la calidad del vapor. Este factor se expresa en función de un número de Reynolds bifásico (Re_{bf}), cuyo valor se obtiene de la ec. (3.16):

$$S = \frac{1}{1 + 0,00000253Re_{bf}^{1,17}}$$
(3.15)

$$Re_{bf} = Re_l F^{1,25} (3.16)$$

El factor multiplicativo bifásico, F, es un término de aumento del coeficiente de transferencia de calor convectivo debido a la turbulencia generada por la diferente densidad del vapor y el líquido, que se puede obtener mediante las expresiones:

$$F = 1$$
 si $\frac{1}{X_{tt}} \le 1$ (3.17a)

$$F = 2,35 \left(\frac{1}{X_{tt}} + 0,213\right)^{0,736} \qquad \text{si } \frac{1}{X_{tt}} > 1 \tag{3.17b}$$

En las ec (3.17a) y (3.17b), el parámetro X_{tt} , es el parámetro de Lockhart-Martinelli (1949), usado sobre la convección como efecto bifásico, y viene definido mediante la expresión:

$$X_{tt} = \left(\frac{1-x}{x}\right)^{0,9} \left(\frac{\rho_{v}}{\rho_{l}}\right)^{0,5} \left(\frac{\mu_{l}}{\mu_{v}}\right)^{0,1}$$
(3.18)

Donde:

 μ_{v} : Viscosidad dinámica evaluada en fase de vapor

Para calcular el coeficiente convectivo del aire, que se encuentra por fuera de los tubos, es necesario seguir el siguiente procedimiento, estableciendo primero ciertos parámetros de diseño:

Se define según algún criterio de diseño, la disposición de los tubos en el banco de ensayo (ver la figura 3.1) (Incropera y De Witt, 1999), que puede ser alineados (a) o en escalón (b), y también las distancias que existen entre ellos, lo cual es necesario para poder realizar el diseño del intercambiador de calor. En este caso se eligió la configuración de tubos alineados como muestra la figura (a), por razones de facilidad de

construcción y mantenimiento, ya que esta disposición de los tubos permite una limpieza más fácil del equipo, además que un intercambiador de calor de tubos alineados posee menos caída de presión. En la figura (a) se señalan las dimensiones que hacen falta para realizar los cálculos.

Fig. 3.1. Disposición típica de los tubos de un intercambiador de calor.

• Se definen las dimensiones de las aletas anulares que estarán unidas a los tubos (ver figura 3.2), las cuales serán parte del intercambiador de calor.

Fig. 3.2. Parámetros de diseño para aletas anulares.
Teniendo los parámetros de diseño iníciales se realizan los siguientes cálculos para el diseño:

Calcular la masa de aire m
_{aire} necesaria para satisfacer la carga térmica deseada:

$$\dot{m}_{aire} = \frac{\dot{Q}_0}{C_{p_{aire}}(\Delta T_{aire})}$$
(3.19)

Donde:

Q₀: Carga térmica del sistema.

 $C_{p_{aire}}$: Capacidad calórica del aire a las condiciones establecidas.

 ΔT_{aire} : Diferencia de temperatura del aire entre la entrada y salida del evaporador.

• Calcular la longitud característica *L*_c.

$$L_c = \frac{\pi}{2}.d\tag{3.20}$$

• Calcular el factor ψ (Spang, 2006)

$$Si, \frac{S_L}{d} \ge 1$$
 (3.21) $\psi = 1 - \frac{\pi}{4 \cdot \left(\frac{S_T}{d}\right)}$ (3.22)

$$Si, \frac{S_L}{d} < 1$$
 (3.23) $\psi = 1 - \frac{\pi}{4 \cdot \left(\frac{S_T}{d}\right) \cdot \left(\frac{S_L}{d}\right)}$ (3.24)

• Calcular el factor de f_{A} (Spang, 2006).

$$f_A = 1 + \frac{0.7 \cdot \left[\left(\frac{S_L}{S_T} \right) - 0.3 \right]}{\psi^{1.5} \cdot \left[\left(\frac{S_L}{S_T} \right) + 0.7 \right]^2}$$
(3.25)

• Calcular la relación de áreas (Spang, 2006).

$$\frac{A_0}{A_e} = \frac{S_L (S_f + \delta_f)}{(S_T - d) \cdot S_f + (S_T - d - 2 \cdot h_f) \cdot \delta_f}$$
(3.26)

• Calcular la relación de áreas (Spang, 2006).

$$\frac{A}{A_{G0}} = 1 + \frac{2.h_f.(h_f + d + \delta_f)}{d.(S_f + \delta_f)}$$
(3.27)

• Calcular el número de Reynolds Re.

$$Re_{L_c} = \frac{\rho_{aire} \cdot V_{\infty} \cdot L_c}{\psi \cdot \mu_{aire}}$$
(3.28)

Donde:

 V_{∞} : Velocidad del aire a la entrada del banco de tubos.

 ρ_{aire} : Densidad del aire.

• Calcular el número de Nusselt para el aire Nu (Kraus y Kern, 2001).

$$Nu_{aire} = f_A \cdot C_{Ali} \cdot Re^{0.6} \cdot \left(\frac{A_0}{A_e}\right)^{0.6} \cdot \left(\frac{A}{A_{G0}}\right)^{-0.15} \cdot Pr_{aire}^{-1/3} \left(\frac{T_{aire}}{T_{Sup}}\right)^{0.12}$$
(3.29)

Dónde:

$$T_{sup} = T_w - \frac{Q_o}{2.\pi . k_{tubo}} . \ln\left(\frac{d}{D_i}\right)$$
(3.30)

El coeficiente C_{ali}, para la configuración del banco de tubos alineados es igual a 0,26 (Kraus y Kern, 2001).

• Calcular el coeficiente convectivo del aire \overline{h} fuera de los tubos (McKetta, 1992).

$$\bar{h} = \frac{Nu.k}{L_c} \tag{3.31}$$

Con los coeficientes convectivos del refrigerante dentro de los tubos y el aire que está fuera de ellos, y tomando la resistencia a la transferencia de calor que produce el material del tubo como despreciable, se calcula el coeficiente global de transferencia de calor, para posteriormente hacer el cálculo del área de diseño del intercambiador. El procedimiento es el siguiente:

Cálculo del coeficiente global de transferencia de calor (McKetta, 1992).

$$U = \frac{1}{\frac{1}{\overline{h}_i} + \frac{1}{\overline{h}}}$$
(3.32)

• Cálculo del promedio logarítmico de la diferencia de temperaturas ΔT_{ml} (McKetta, 1992).

Capitulo 3. Marco metodológico.

$$\Delta T_{ml} = \frac{\left(T_{h_i} - T_{c_o}\right) - \left(T_{h_o} - T_{c_i}\right)}{\ln\left[\frac{\left(T_{h_i} - T_{c_o}\right)}{\left(T_{h_o} - T_{c_i}\right)}\right]}$$
(3.33)

• Cálculo del área de transferencia de calor A_s del Evaporador.

$$A_s = \frac{\dot{Q_o}}{U.\Delta T_{ml}} \tag{3.34}$$

Una vez obtenida el área, se recalcula la temperatura supuesta de la pared interna con la ecuación:

$$T_w = \frac{\dot{Q_o}}{h_i \cdot A_s} + T_i \tag{3.35}$$

3.4.7. Diseño del condensador (R-134a, R-404a y R-410a).

Este intercambiador de calor, encargado de transferir el calor del equipo hacia el ambiente, se diseñó usando la ecuación de Traviss (Travis *et al.*, 1973) para el refrigerante que fluye en el interior de los tubos, dado que en este caso se presentó condensación. Para la parte externa a los tubos (donde fluye el aire), se siguió la misma metodología dada en la sección anterior, con la diferencia de que la carga térmica con la que se calcula el área de transferencia de calor no es supuesta como es el caso del evaporador, sino que al contrario, debe calcularse, y se hace con la ayuda de la siguiente ecuación:

$$\dot{Q} = \dot{m}_{ref} \left(h_2 - h_3 \right) \tag{3.36}$$

En este caso, se calcula primero el número de Nusselt en fase de vapor, usando la siguiente ecuación:

$$Nu_D = 0.15 \frac{Pr_l Re_l^{0.9}}{F} \left(\frac{1}{X_{tt}} + \frac{2.85}{X_{tt}^{0.476}} \right)$$
(3.37)

Donde:

$$F = 5Pr_l + 5\ln(1 + 5Pr_l) + 25\ln(0,0031Re_l^{0,812}), \text{ si } 1125 < Re_l \qquad (3.38a)$$

$$F = 5Pr_l + 5\ln[1 + Pr_l(0,0964Re_l^{0,585} - 1)], \text{ si } 50 < Re_l < 1125 \quad (3.38b)$$

$$F = 0,707 Pr_l Re_l^{0,5}, \text{ si } Re_l < 50$$
(3.38c)

3.4.8. Diseño del enfriador de gas (para el CO₂)

El enfriador de gas no se diseña de la misma forma que el evaporador para el CO_2 , ya que el fluido en este equipo se encuentra en estado supercrítico, por lo tanto, se usa una correlación específica para hallar el número de Nusselt para el CO_2 en estado supercrítico dentro de una tubería (Sarkar y Goutam, 2006).

$$Nu = 0,001546. Re^{1,054}. Pr_{CO_2}^{0,635}. \left(\frac{\rho_w}{\rho_{CO_2}}\right)^{0,367}. \left(\frac{\overline{Cp}}{C_{p_{CO_2}}}\right)^{0,4}$$
(3.39)

El número de Reynolds Re_D se calcula con la siguiente ecuación:

$$Re_D = \frac{4 \cdot \dot{m}_{tubo}}{\pi \cdot D_i \cdot \mu} \tag{3.40}$$

Donde:

D_i: Diámetro interno del tubo del intercambiador de calor.

 μ : Viscosidad dinámica del fluido.

Para el cálculo del \overline{Cp} , se usa la siguiente expresión:

$$\overline{Cp} = \frac{h_e - h_s}{T_e - T_s} \tag{3.41}$$

Donde:

 h_e : Entalpía del fluido a la entrada del intercambiador de calor.

 h_s : Entalpía del fluido a la salida del intercambiador de calor.

 T_e : Temperatura del fluido a la entrada del intercambiador de calor.

 T_s : Temperatura del fluido a la salida del intercambiador de calor.

3.5. Longitud de los equipos

Con la configuración geométrica del banco de tubos y todas sus dimensiones, es posible obtener un valor estimado de área por cada metro de longitud, lo que permite realizar una mejor comparación desde el punto de vista físico del equipo, para esto, se calcula el área superficial del tubo aleteado en m^2/m :

$$R_{2c} = \left(\frac{d}{2} + h_f\right) + \frac{\delta_f}{4} \tag{3.42}$$

$$A = n \left[2\pi \left((R_{2c})^2 - \left(\frac{d}{2}\right)^2 \right) + \pi dS \right]$$
(3.43)

Donde:

n: Cantidad de aletas por metro de longitud

Luego, al dividir la ecuación 3.34 entre 3.43, se obtiene la longitud aproximada para el equipo:

$$L_{equipo} = \frac{A_s}{A.n_{tubos}}$$
(3.44)

3.6. Selección de otros equipos del sistema de refrigeración y lubricante del sistema.

A partir de catálogos de productos disponibles en la web, publicados de empresas fabricantes de equipos para aplicaciones de sistemas de refrigeración, se seleccionó un compresor que cumpla con los parámetros de temperatura de salida del enfriador de gas, temperatura de evaporación y además de la carga térmica. También se identificó el lubricante que recomienda el fabricante para este tipo de equipo.

También se seleccionó según catálogos en la web, una válvula de expansión que aplique para sistemas de refrigeración donde la caída de presión en la válvula es de 7 MPa.

CAPÍTULO 4

Evaluación termodinámica y diseño.

4.1.Evaluación de las propiedades del CO₂, R-134a, R-404a y R-410a en el ciclo de refrigeración simple.

Para evaluar las propiedades termofísicas del CO_2 y el resto de los refrigerantes, se usó diagramas P-h como el que se muestra en la figura 4.1, y tablas termodinámicas.

Fig. 4.1. Diagrama P-h para el refrigerante R-744 (CO₂).

Fuente: Manual del ASHRAE, capítulo 30 (ASHRAE, 2009).

Usando el diagrama P-h disponible en el manual de la ASHRAE, se obtuvo las propiedades en los puntos necesarios, como temperaturas y presiones a la salida del enfriador de gas y del evaporador, que serán de utilidad en cálculos de flujo de refrigerante necesario para el sistema, potencia del compresor y COP, y se haciendo uso de las tablas de propiedades, se logró obtener las propiedades termofísicas para las temperaturas medias. Para estos cálculos, se estableció una serie de suposiciones; primero, el compresor debe elevar la presión del fluido de manera isentrópica, el estado del fluido a la entrada del compresor es vapor saturado, y la expansión desde la salida del enfriador de gas o condensador hasta el evaporador se realiza isoentálpicamente.

Las propiedades se evaluaron en un ciclo de refrigeración simple transcrítico para el CO_2 y en un ciclo subcrítico sencillo en el caso de los demás refrigerantes, como los que se muestran en la figura 4.2.

Fig. 4.2. Ciclo de refrigeración simple subcrítico (izquierda) y transcrítico (derecha). Fuente: Manual de diseño de Danfoss (Danfoss, 2008).

En la figura 4.2 se puede observar, que el punto 1 corresponde a la salida del evaporador, en un estado que bien puede ser vapor saturado o sobrecalentado. El punto 2 es a la salida de compresor, donde el refrigerante se encuentra ya en estado

supercrítico en el caso del CO_2 . En el punto 3, ya el refrigerante hizo su recorrido por el enfriador de gas o por el condensador para los refrigerantes convencionales, y luego el fluido se expande isoentálpicamente hasta el punto 4, que representa las propiedades del fluido a la entrada del evaporador, encontrándose el mismo en mezcla.

Se estableció una situación, en la que luego se pudo comparar el refrigerante propuesto, con el R-134a, R-404a y R-410a en un ciclo de refrigeración para acondicionamiento de ambiente.

4.1.1. Propiedades del CO₂ en ciclo de refrigeración para acondicionamiento de ambiente.

Para un ciclo de acondicionamiento de ambiente, se estableció como temperatura de evaporación 10 °C y una temperatura de condensación de 40 °C.

Con ayuda de los diagramas P-h y un esquema del ciclo, tal como el que se muestra en la figura 4.3, se obtuvo los puntos a las condiciones establecidas.

Fig. 4.3. Diagrama P-h del refrigerante R-744 para condiciones dadas.

Fuente: Manual del ASHRAE, capítulo 30 (ASHRAE, 2009).

En la tabla 4.1 se muestran los valores obtenidos del diagrama P-h (Anexo G), y las tablas termodinámicas (Anexo H).

Punto	Presión (kPa)	Temperatura (°C)	Entalpías (kJ/kg)
1	4.502,20	10	422,88
2	10.000	70	451
3	10.000	40	312,8
4	4.502,20	10	312,8

Tabla 4.1. Propiedades para el CO₂ en los puntos definidos.

Las propiedades en la zona de evaporación se presentan en la tabla 4.2 mostrada a continuación:

Tabla 4.2. Propiedades del CO₂ a las condiciones de evaporación.

$\rho_l (kg/m^3)$	861,1
$ ho_v (kg/m^3)$	135,13
μ_l (Pa.s)	$82,6 \times 10^{-6}$
μ_v (Pa.s)	$16,06 \times 10^{-6}$
h _f (kJ/kgK)	225,73
$h_g \left(kJ/kgK \right)$	422,88
$h_{fg} (kJ/kgK)$	197,15
$k_l (W/mK)$	$98,1 \times 10^{-3}$
c_{pl} (kJ/kgK)	2.998
$\sigma\left(N/m ight)$	$2,76 \times 10^{-3}$
Pr _l	2,5243

Luego, sabiendo que la temperatura de entrada en el enfriador de gas es de 70°C, y la de salida es 40°C, se obtuvo las propiedades para cálculos posteriores, con la temperatura media. Los valores presentados en la tabla 4.3, se obtuvieron con ayuda de la calculadora de propiedades de The Industrial Refrigeration Consortium (IRC, 2011), una calculadora web para el cálculo de propiedades termofísicas de algunos fluidos.

$k_{CO_2} (W/m.K)$	44×10^{-3}
$\mu_{CO_2} \left(N.s/m^2 \right)$	$25,3 \times 10^{-6}$
Pr_{CO_2}	2,26
$Cp_{CO_2}(J/kg.K)$	3.940
$ ho_{CO_2} (kg/m^3)$	325
$h_{in} (J/kg)$	338.000
h_{out} (J/kg)	200.000

Tabla 4.3. Propiedades del CO₂ a las condiciones de enfriamiento.

4.1.2. Propiedades del R-134a, R-404a y R-410a en ciclo de refrigeración para acondicionamiento de ambiente.

Al igual que con el CO_2 , primero se uso el diagrama P-h (Anexo A, C y E) para obtener los puntos de trabajo del ciclo, y luego se utilizaron las tablas termodinámicas (Anexo B, D y F) para calcular las propiedades en la evaporación y condensación. En las tabla 4.4, 4.5 y 4.6 se muestran las propiedades de los refrigerantes convencionales evaluados en los puntos de trabajo del diagrama P-h.

Punto	Presión (kPa)	Temperatura (°C)	Entalpías (kJ/kg)
1	414,61	10	404,32
2	1.016,6	44	423,8
3	1.016,6	40	256,41
4	414,61	10	256,41

Tabla 4.4. Propiedades para el R-134a en los puntos definidos.

Tabla 4.5. Propiedades para el R-404a en los puntos definidos.

Punto	Presión (kPa)	Temperatura (°C)	Entalpías (kJ/kg)
1	827,29	10	370,77
2	1.830	44	385
3	1.830	40	260
4	827,29	10	260

Tabla 4.6. Propiedades para el R-410a en los puntos definidos.

Punto	Presión (kPa)	Temperatura (°C)	Entalpías (kJ/kg)
1	1.088,71	10	423,98
2	2.426	52	444
3	2.426	40	266,2
4	1.088,71	10	266,2

En la tabla 4.7 se presentan las propiedades de los refrigerantes, necesarias para realizar el diseño del evaporador y en la tabla 4.8 se observan las propiedades para la condensación. Cabe destacar que las propiedades de condensación y evaporación se calcularon de igual forma, a la temperatura media entre la temperatura de entrada y de salida del condensador y evaporador.

Refrigerante	R-134 ^a	R-404 a	R-410a
$ ho_l (kg/m^3)$	1.261	1.110,4	1.128,34
$ ho_v (kg/m^3)$	20,23	42,24	42,04
μ_l (Pa.s)	$238,8 \times 10^{-6}$	$155,55 \times 10^{-6}$	$149,53 \times 10^{-6}$
μ_{v} (Pa.s)	$11,15 \times 10^{-6}$	$11,35 \times 10^{-6}$	$12,63 \times 10^{-6}$
$h_f \left(kJ/kg \right)$	213,58	214,11	215,46
$h_g \left(kJ/kg ight)$	404,32	370,77	423,98
$h_{fg} \left(kJ/kg \right)$	190,74	156,66	208,52
$k_l (W/mK)$	$87,6 \times 10^{-3}$	$73,16 \times 10^{-3}$	$108,84 \times 10^{-3}$
$c_{pl} (kJ/kgK)$	1,370	1,438	1,578
$\sigma (N/m)$	$10,14 \times 10^{-3}$	$6,34 \times 10^{-3}$	$7,52 \times 10^{-3}$
Pr _l	3,375	3,057	2,169

Tabla 4.7. Propiedades del R-134a, R-404a y R-410a a las condiciones de evaporación

Refrigerante	R-134a	R-404a	R-410 a
$\rho_l (kg/m^3)$	1.138,2	952,48	935,94
$ ho_v (kg/m^3)$	52,99	108,86	124,61
μ_l (Pa.s)	$159,2 \times 10^{-6}$	$98,84 \times 10^{-6}$	$88,63 \times 10^{-6}$
μ_v (Pa.s)	$12,65 \times 10^{-6}$	$13,51 \times 10^{-6}$	$15,21 \times 10^{-6}$
c_{pl} (kJ/kgK)	1,510	1,759	2,099
c_{pv} (kJ/kgK)	1,163	1,553	2,134
$k_l (W/mK)$	$73,9 \times 10^{-3}$	$60,03 \times 10^{-3}$	$85,97 \times 10^{-3}$
$k_v (W/mK)$	$15,\!68 imes 10^{-3}$	$19,49 \times 10^{-3}$	$22,28 \times 10^{-3}$
$\sigma\left(N/m ight)$	$5,88 \times 10^{-3}$	$2,62 \times 10^{-3}$	$2,502 \times 10^{-3}$
Pr _l	3,259	2,897	2,164

Tabla 4.8. Propiedades del R-134a, R-404a y R-410a a las condiciones de evaporación

4.2.Comparación del refrigerante R-744 (CO₂) y el resto de los refrigerantes

La comparación se basa en un ciclo de refrigeración a compresión de vapor sencillo, como el que se muestra en la figura 4.4, donde se establece como punto de comparación el COP, usando una carga térmica de 5 kW, y las propiedades termofísicas para cada fluido.

Primero se usó la ec. (3.1) para calcular el flujo másico de refrigerante necesario para cada ciclo, en este caso se muestra el cálculo para el refrigerante R-744:

$$\dot{m}_{ref} = \frac{5 \, kW}{422,88 \, kJ/kg - 312,8 \, kJ/kg}$$

$$\dot{m}_{ref} = 0,0454 \, kg/s$$

Fig. 4.4. Esquema de ciclo de refrigeración transcrítico simple.

Luego, con ayuda de la ec. (3.2), se calculó el trabajo realizado por el compresor para el ciclo de R-744:

$$\dot{W} = (0,0454 \, kg/s)(451 \, kJ/kg - 422,88 \, kJ/kg)$$
$$\dot{W} = 1,27 \, kW$$

Finalmente, se usó la ec. (3.3) para obtener el COP del ciclo:

$$COP = \frac{5 \ kW}{1,27 \ kW}$$
$$COP = 3,93$$

A continuación se muestra una tabla comparativa (tabla 4.9) con el resto de los resultados obtenidos para cada refrigerante:

-	R-744	R-134a	R-404 ^a	R-410a
$\dot{m}_{ref}~(kg/s)$	0,0454	0,0338	0,0451	0,0317
Ŵ (kW)	1,27	0,66	0,64	0,63
СОР	3,93	7,57	7,81	7,94

Tabla 4.9. Tabla comparativa para todos los refrigerantes.

4.3. Cálculo del evaporador para el sistema de refrigerante R-134a.

4.3.1. Cálculo del coeficiente convectivo interno.

De la sección 4.1 (tabla 4.7) se saben las propiedades termofísicas necesarias para los cálculos, y de la sección 4.2 (tabla 4.9) se sabe el flujo másico, por lo que ahora sólo falta establecer el número de tubos y el diámetro interno de la tubería, parámetros que se usarán en el diseño del resto de los intercambiadores de calor (evaporadores, condensadores y enfriador de gas) para realizar una comparación valida. Estos parámetros se pueden observar en la tabla 4.10.

n_{tubos}	$D_i(m)$
10	0,008

Tabla 4.10. Diámetro interno y número de tubos establecido para el diseño.

Se decidió tomar como diámetro interno la medida de 8 mm con un espesor de 0,8 mm, por la referencia existente en un trabajo realizado anteriormente por Giuseppe Monticelli (Monticelli, 2009), donde estudió de manera simulada el diseño de una bomba de calor para calentamiento de aire. En el trabajo de Monticelli se diseñaron

unos intercambiadores para condiciones similares a la de esta investigación, por lo tanto se tomo como referencia su diseño geométrico para seleccionar el diámetro interno y espesor de los tubos.

Utilizando la ec. (3.10), se calculó el valor de h_{FZ} , pero primero se supuso una temperatura de pared, como se sabe que el diámetro del tubo es pequeño, se puede asumir un valor muy cercano a la temperatura de evaporación, en este caso se comenzó con un valor de 11 °C, realizando un proceso iterativo hasta obtener los valores correctos, los cuales son los presentados a continuación:

 $\Delta T_{sat} = (12,047 - 10)K$

$$\Delta P_{sat} = (443,7119 - 414,61) kPa$$

 $h_{FZ} = 0,00122 \left[\frac{(87,6 \times 10^{-3} W/mK)^{0.79} (1.370 kJ/kgK)^{0.45} (1.261 kg/m^3)^{0.49}}{(10,14 \times 10^{-3} N/m)^{0.5} (238,8 \times 10^{-6} Pa.s)^{0.29} (190,74 kJ/kgK)^{0.24} (20,23 kg/m^3)^{0.24}} \right] (2,047 K)^{0.24} (29,1019 kPa)^{0.75}$

$$h_{FZ} = 34,7573 W/m^2 K$$

Se procedió a calcular el flujo másico por cada tubo con la ec. (3.5):

$$\dot{m}_{tubo} = \frac{0.0338 \ kg/s}{10}$$

$$\dot{m}_{tubo} = 0,00338 \, kg/s$$

Se calculó la velocidad másica superficial del fluido como se indica en la ec. (3.6), sabiendo que el área del tubo es:

$$A_{tubo} = \frac{\pi (0,008 \ m)^2}{4}$$
$$A_{tubo} = 50,265 \times 10^{-6} \ m^2$$
$$G = \frac{0,00338 \ kg/s}{50,265 \times 10^{-6} \ m^2}$$
$$G = 67,243 \ kg/m^2s$$

Se obtuvo la calidad media, con ayuda de los valores de entalpía obtenidos en secciones anteriores, y el valor de h_f y h_g de la tabla 4.5, de la forma siguiente:

$$x_{3} = \frac{256,41 \ kJ/kgK - 213,58 \ kJ/kgK}{404,32 \ kJ/kgK - 213,58 \ kJ/kgK}$$
$$x_{3} = 0,2245$$

Sabiendo que la calidad en vapor saturado es igual a 1, se tiene que:

$$x_m = \frac{0,2245 + 1}{2} = 0,6123$$

Se calculó el número de Reynolds, según la ec. (3.14):

$$Re_{l} = \frac{(67,243 \ kg/m^{2}s)(1 - 0,6123)(0,008 \ m)}{(238,8 \times 10^{-6} \ Pa. s)}$$

$$Re_l = 873,37$$

Se halló el coeficiente de convección con ayuda de la ec. (3.13):

$$h_L = 3,66 \left(\frac{87,6 \times 10^{-3} \ W/mK}{0,008 \ m} \right)$$

$$h_L = 40,077 \ W/m^2 K$$

Con la ec. (3.18), se calculó el parámetro de Lockhart-Martinelli, y luego se obtuvo el factor multiplicativo bifásico con la ec. (3.17)

$$X_{tt} = \left(\frac{1 - 0.6123}{0.6123}\right)^{0.9} \left(\frac{20.23 \ kg/m^3}{1.261 \ kg/m^3}\right)^{0.5} \left(\frac{238.8 \times 10^{-6} \ Pa.s}{11.15 \times 10^{-6} \ Pa.s}\right)^{0.1}$$
$$\frac{1}{X_{tt}} = 8.7688$$

$$F = 2,35(8,7688 + 0,213)^{0,736}$$

$$F = 11,8235$$

Luego se obtuvo el factor de supresión de ebullición nucleada, ec. (3.15), obteniendo primero el número de Reynolds bifásico con ec. (3.16):

$$Re_{bf} = (873,37)(11,8235)^{1,25}$$

$$Re_{bf} = 19.148,2678$$

$$S = \frac{1}{1 + 0,00000253(19.148,2678)^{1,17}}$$

$$S = 0,7943$$

Por último, se calculó el coeficiente de película interno haciendo uso de la ec. (3.9):

$$h_i = (34,7573W/m^2K)(0,7943) + (40,077W/m^2K)(11,8235)$$

 $h_i = 501,4574 W/m^2 K$

4.3.2. Cálculo del coeficiente convectivo externo.

Para este cálculo, debido a la imposibilidad de tomar mediciones, también se establecieron ciertos valores, como la temperatura de salida deseada de aire, el diseño de los tubos aleteados, y la carga térmica necesaria. Suponiendo que el aire sale con una velocidad promedio de 12 m/s del evaporador y a una temperatura de 15 °C, se calculó T_f con la ec. (3.4).

$$T_f = \frac{303 K + 288 K}{2}$$

 $T_f = 295,5 K$

De la tabla del aire para $T_f = 295,5 K$ y a la presión atmosférica, se obtuvo los valores mostrados en la tabla 4.11 (Anexo I).

Tabla 4.11. Propiedades para el aire a 295,5 K y 1 atm.

$k_{aire} (W/m.K)$	$ ho_{aire}~(kg/m^3)$	$c_p(J/kg.K)$	μ_{aire} (Pa.s)	<i>Pr_{aire}</i>
$25,95 \times 10^{-3}$	1,1943	1.006,25	$18,38 \times 10^{-6}$	0,713

Sabiendo que la carga térmica es $\dot{Q}_0 = 5 kW$, y haciendo uso de la ec. (3.19), se calculó el flujo másico de aire que se necesita para lograr el intercambio térmico:

$$\dot{m}_{aire} = \frac{(5.000 \, W)}{(1.006,25 \, J/kgK) \, (15 \, K)}$$
$$\dot{m}_{aire} = 0,331 \, kg/s$$

También se logró calcular la temperatura en la superficie de la pared con la ec. (3.30), tomando en cuenta que la conductividad térmica del tubo de cobre es de k = 401 W/mK (tomado de la tabla A-14, del apéndice 1, (Incropera y De Witt, 1999)):

$$T_{sup} = 285,047 \, K + \frac{(5.000 \, W)}{2\pi (401 \, W/mK)} \, . \ln\left(\frac{0,0096 \, m}{0,008 \, m}\right)$$

$$T_{sup} = 285,4088 \, K$$

Para las aletas, las suposiciones se muestran en la tabla 4.12, para todos los equipos, (esto con motivo de que aquellos resultados que se obtengan más adelante, puedan ser comparables de una forma más directa).

Tabla 4.12. Suposiciones establecidas para el diseño del banco de tubos aleteados.

Separación horizontal	Separación vertical	Espesor de la aleta	Atura de la aleta	Separación entre aletas	Diámetro externo de la tubería
$S_L(m)$	$S_T(m)$	δ (m)	$h_f(m)$	<i>S</i> (<i>m</i>)	<i>d</i> (<i>m</i>)
0,04	0,04	0,0003	0,015	0,002	0,0096

La longitud característica, viene dada por la ec. (3.20):

$$L_c = \frac{\pi}{2} \times 0,0096 m$$
$$L_c = 0,0151 m$$

Los factores ψ y f_A vienen siendo el resultado las ec. (3.22) y (3.25) respectivamente:

$$\psi = 1 - \frac{\pi}{4 \times \left(\frac{0.04 \, m}{0.0096 \, m}\right)}$$
$$\psi = 0.8115$$

$$f_A = 1 + \frac{0.7 \cdot \left[\left(\frac{0.04}{0.04} \right) - 0.3 \right]}{0.8115^{1.5} \cdot \left[\left(\frac{0.04}{0.04} \right) + 0.7 \right]^2}$$
$$f_A = 1,2319$$

Se calculó el factor de A_0/A_e , de la ec. (3.26):

$$\frac{A_0}{A_e} = \frac{0,04 \ m \times (\ 0,002 \ m + 0,0003 \ m)}{(0,04 \ m - 0,0096 \ m) \times 0,002 \ m + (0,04 \ m - 0,0096 \ m - 2 \times 0,015 \ m) \times 0,0003 \ m}$$

$$\frac{A_0}{A_e} = 1,5102$$

Luego se obtuvo el factor A/A_{G0} de la ec. (3.27):

$$\frac{A}{A_{G0}} = 1 + \frac{2 \times 0,015 \ m \times (0,015 \ m + 0,0096 \ m + 0,0003 \ m)}{0,0096 \ m \times (0,002 \ m + 0,0003 \ m)}$$
$$\frac{A}{A_{G0}} = 34,8315$$

Se calculó el Reynolds, usando la ec. (3.28):

$$Re_{L_c} = \frac{(1,1943 \ kg/m^3)(12 \ m/s)(0,0151 \ m)}{(0,8115)(18,38 \ \times \ 10^{-6} \ Pa. \ s)}$$
$$Re_{L_c} = 14.487,3954$$

Con todos estos factores una vez obtenidos, se procedió al cálculo del número de Nusselt, haciendo uso de la ec. (3.29):

Nu_{aire}

$$= (1,2329)(0,26)(14.487,3954)^{0,6}(1,5102)^{0,6}(34,8315)^{-0,15}(0,713)^{1/3} \left(\frac{303 K}{285,4088 K}\right)^{0,12}$$

 $Nu_{aire} = 67,9822$

Por último se obtuvo el coeficiente convectivo del aire con al ec. (3.31):

$$h_{aire} = \frac{68,0122 \times 25,95 \times 10^{-3} \ W/m.K}{0,0151 \ m}$$
$$h_{aire} = 116,9993 \ W/m^2.K$$

4.3.3. Cálculo del área de transferencia de calor necesaria.

Para el cálculo del área de intercambio, primero se calculó el coeficiente global de transferencia de calor, ec. (3.32):

$$U = \frac{1}{\frac{1}{501,4574 W/m^2 K} + \frac{1}{116,9993 W/m^2 K}}$$
$$U = 94,8655 W/m^2 K$$

Para calcular el promedio logarítmico de la diferencia de temperatura, se necesitan las temperaturas de los fluidos a la entrada y a la salida del evaporador, estas se pueden apreciar en la tabla 4.13.

Tabla 4.13. Temperaturas de entrada y salida para ambos fluidos en el evaporador.

<i>T_{h_i}</i> (°C)	<i>T_{ho}</i> (°C)	$T_{c_i}(^{\circ}\mathrm{C})$	T_{c_o} (°C)
30	15	10	10

Se calculó la diferencia de temperatura media logarítmica con la ec. (3.33):

$$\Delta T_{ml} = \frac{(30 \text{ }^{\circ}\text{C} - 10^{\circ}\text{C}) - (15^{\circ}\text{C} - 10^{\circ}\text{C})}{\ln\left[\frac{(30 \text{ }^{\circ}\text{C} - 10^{\circ}\text{C})}{(15^{\circ}\text{C} - 10^{\circ}\text{C})}\right]}$$

$$\Delta T_{ml} = 10,82 \text{ °C} = 10,82 \text{ K}$$

Finalmente se calculó el área de transferencia de calor necesaria para cumplir con la carga térmica establecida, usando la ec. (3.34):

$$A_s = \frac{(5.000 W)}{(94,8655 W/m^2. K)(10,82 K)}$$
$$A_s = 4,8711 m^2$$

En la figura 4.5 se muestra un esquema con las especificaciones del intercambiador de calor diseñado.

Fig. 4.5. Evaporador diseñado para el R-134a.

4.4.Cálculo del evaporador para el sistema de refrigerante CO₂ (R-744).

4.4.1. Cálculo del coeficiente convectivo interno.

Al igual que en la sección anterior, se siguen exactamente los mismos pasos, debido a que el refrigerante se encuentra en un estado de mezcla, todas las propiedades necesarias en los cálculos se tomaron de la tabla 4.2.

Se utilizó la ec. (3.10) para calcular el valor de h_{FZ} , pero primero se supuso una temperatura de pared, como se sabe que el diámetro del tubo es pequeño, se puede asumir un valor muy cercano a la temperatura de evaporación, en este caso se comenzó con un valor de 11 °C, y se realizó un proceso iterativo hasta obtener los valores correctos, los cuales son los presentados a continuación:

$$\Delta T_{sat} = (11,8436 - 10)K$$
$$\Delta P_{sat} = (4.711,74528 - 4.502,20)kPa$$

$$h_{FZ} = 0,00122 \left[\frac{(98,1 \times 10^{-3} W/mK)^{0,79} (2998 kJ / kgK)^{0,45} (861,1 kg / m^3)^{0,49}}{(2,76 \times 10^{-3} N/m)^{0,5} (82,6 \times 10^{-6} Pa.s)^{0,29} (197,15 kJ / kgK)^{0,24} (135,13 kg / m^3)^{0,24}} \right] (1,8436 K)^{0,24} (209,5453 kPa)^{0,75}$$

$$h_{FZ} = 315,3065 W/m^2 K$$

Se procedió a calcular el flujo másico por cada tubo con la ec. (3.5):

$$\dot{m}_{tubo} = \frac{0.0454 \ kg/s}{10}$$

 $\dot{m}_{tubo} = 0.00454 \ kg/s$

Se calculó el flujo másico como se indica en la ec. (3.6), sabiendo que el área del tubo es:

$$A_{tubo} = \frac{\pi (0,008 m)^2}{4}$$
$$A_{tubo} = 50,265 \times 10^{-6} m^2$$

$$G = \frac{0,0095 \ kg/s}{50,265 \ \times 10^{-6} \ m^2}$$
$$G = 90,32 \ kg/m^2s$$

Se calculó la calidad media, con ayuda de los valores de entalpía obtenidos en secciones anteriores, y el valor de h_f y h_g de la tabla 4.10, de la siguiente forma:

$$x_{3} = \frac{\frac{312,8 \ kJ/kgK - 225,73 \ kJ/kgK}{422,88 \ kJ/kgK - 225,73 \ kJ/kgK}}{x_{3} = 0,4416}$$

Sabiendo que la calidad en vapor saturado es igual a 1, se tiene que:

$$x = \frac{0,4416 + 1}{2} = 0,7208$$

Se obtuvo el número de Reynolds, según la ec. (3.14):

$$Re_{l} = \frac{(90,32 \ kg/m^{2}s)(1 - 0,7208)(0,008 \ m)}{(82,6 \times 10^{-6} \ Pa. \ s)}$$

$$Re_l = 2.442,3694$$

Se calculó el coeficiente convectivo con ayuda de la ec. (3.13):

$$h_L = 3,66 \left(\frac{98,1 \times 10^{-3} \ W/mK}{0,008 \ m} \right)$$

$$h_L = 44,8807 W/m^2 K$$

Se calculó el parámetro de Lockhart-Martinelli, con la ec. (3.18), y luego se obtuvo el factor multiplicativo bifásico usando la ec. (3.17)

$$F = 7,9578$$

Luego se obtuvo el factor de supresión de ebullición nucleada, ec. (3.15), obteniendo primero el número de Reynolds bifásico con la ec (3.16):

$$Re_{bf} = (2.442,3694)(7,9578)^{1,25}$$

$$Re_{bf} = 32.643,855$$

 $S = \frac{1}{1 + 0,00000253(32.643,855)^{1,17}}$

$$S = 0,6741$$

Por último, se calculó el coeficiente de película interno haciendo uso de la ec. (3.9):

 $h_i = (315,3065 W/m^2 K)(0,6741) + (44,8807 W/m^2 K)(7,9578)$

$$h_i = 569,714 \ W/m^2 K$$

4.4.2. Cálculo del área de transferencia de calor necesaria.

Para este cálculo, al igual que para el evaporador de R-134a, también se establecieron ciertos valores, como la temperatura de salida deseada de aire, el diseño de los tubos aleteados, y la carga térmica necesaria. Por estas razones, también se usó los datos de las tablas 4.11 (propiedades del aire a 295,5 K y 1 atm) y 4.12 (diseño geométrico de los tubos aleteados).

También se logró calcular la temperatura en la superficie de la pared con la ec. (3.30), tomando en cuenta que la conductividad térmica del tubo de cobre es de k = 401 W/mK (Anexo J):

$$T_{sup} = 284,8436 \, K + \frac{(5.000 \, W)}{2\pi \, (401 \, W/mK)} \, . \ln\left(\frac{0,0096 \, m}{0,008 \, m}\right)$$
$$T_{sup} = 285,2054 \, K$$

A partir de este punto, como la configuración geométrica para las aletas y las condiciones de temperaturas son iguales, se presentan los cálculos realizados en la sección anterior en una tabla (4.14).

Tabla 4.14. Cálculos geométricos para el banco de tubos.

$L_c(m)$	ψ	f_A	$\frac{A_0}{A_e}$	$\frac{A}{A_{G0}}$	Re _{Lc}
0,0151	0,8115	1,2319	1,5102	34,8315	14.487,3954

Con todos estos factores, se cálculo del número de Nusselt, haciendo uso de la ec. (3.29):

Nu_{aire}

$$= (1,2319)(0,26)(14.487,3954)^{0,6}(1,5102)^{0,6}(34,8315)^{-0,15}(0,713)^{1/3} \left(\frac{303 K}{285,2054 K}\right)^{0,12}$$

$$Nu_{aire} = 67,988$$

Por último se obtuvo el coeficiente convectivo del aire con al ec. (3.31):

$$\bar{h}_{aire} = \frac{67,988 \times 25,95 \times 10^{-3} \ W/m.K}{0,0151 \ m}$$
$$\bar{h}_{aire} = 117,0093 \ W/m^2.K$$

Se calculó el coeficiente global de transferencia usando la ec. (3.32):

$$U = \frac{1}{\frac{1}{569,714 W/m^2. K} + \frac{1}{117,0093 W/m^2. K}}$$
$$U = 97,0724 W/m^2. K$$

Para calcular el promedio logarítmico de la diferencia de temperatura, se necesitan las temperaturas de los fluidos a la entrada y a la salida del evaporador (*ver Tabla 4.13*).

Se calculó la diferencia de temperatura media logarítmica con la ec. (3.33):

$$\Delta T_{ml} = \frac{(30 \text{ °C} - 10 \text{ °C}) - (15 \text{ °C} - 10 \text{ °C})}{\ln \left[\frac{(30 \text{ °C} - 10 \text{ °C})}{(15 \text{ °C} - 10 \text{ °C})}\right]}$$

$$\Delta T_{ml} = 10,82 \text{ °C} = 10,82 \text{ K}$$

Finalmente se calculó el área de transferencia de calor necesaria para cumplir con la carga térmica establecida, usando la ec. (3.34):

$$A_s = \frac{(5.000 W)}{(97,0724 W/m^2.K) \times (10,82 K)}$$

$$A_s = 4,7603 m^2$$

En la figura 4.6 se muestra un esquema con las especificaciones del intercambiador de calor diseñado.

Fig. 4.6. Evaporador diseñado para el CO₂.

4.5.Cálculo de los evaporadores para los sistemas con los refrigerantes R-404a y R-410a.

4.5.1. Cálculo del coeficiente convectivo interno.

De igual forma que en la sección anterior, se siguen los mismos pasos para realizar los cálculos del coeficiente convectivo dentro de los tubos, debido a que ambos refrigerantes se encuentran en estado de mezcla. Todas las propiedades necesarias en los cálculos se tomaron de la tabla 4.7.

Primero se debe suponer una temperatura de pared, se asumió un valor muy cercano a la temperatura de evaporación, en este caso se usó una temperatura de 11 °C, y se realizó un proceso iterativo hasta obtener los valores correctos, los cuales son los presentados a continuación en la tabla 4.15.

	R-404a	R-410a
ΔT_{sat} (K)	2,5547	1,957
ΔP_{sat} (kPa)	63,4853	64,884
$h_{FZ} (W/m^2 K)$	68,9312	82,1052
$\dot{m}_{tubo}~(kg/s)$	0,00451	0,00317
$G\left(kg/m^2s\right)$	89,7236	63,0651
<i>x</i> ₃	0,2929	0,2433
x	0,6464	0,62165
Rel	1.631,464	1.276,5704
$h_L (W/m^2 K)$	33,4707	49,7943
$\frac{1}{X_{tt}}$	6,79332	6,326
F	9,84801	9,3602
Re_{bf}	28.461,85368	20.900,4381
S	0,70835	0,777
$h_i (W/m^2 K)$	378,4475	529,8899

Tabla 4.15. Cálculos internos para los evaporadores de R-404a y R-410a.

4.5.2. Cálculo del coeficiente convectivo externo y área de transferencia de calor necesaria.

Para este cálculo, también establecieron ciertos valores, como la temperatura de salida deseada de aire, el diseño de los tubos aleteados, y la carga térmica necesaria. Por estas razones, también se usó los datos de las tablas 4.11 (propiedades del aire a 295,5 K y 1 atm) y 4.12 (diseño geométrico de los tubos aleteados).

Ya que la configuración geométrica para las aletas, condiciones de temperaturas y metodología de cálculo es igual en todos casos, se presentan los resultados obtenidos en los cálculos en la tabla. 4.16

	R-404a	R-410a
Nu _{aire}	67,9677	67,9848
$\bar{h}_{aire} \ (W/m^2.K)$	116,9744	117,0038
$U(W/m^2.K)$	89,3555	95,8413
ΔT_{ml} (K)	10,8202	10,8202
T_{sup} (K)	285,9165	285,3188
$A_s(m^2)$	5,1715	4,8215

Tabla 4.16. Cálculos externos para el evaporador de R-404a y R-410a.

En las figuras 4.7 y 4.8 se muestran los esquemas con las especificaciones de diseño de los intercambiadores de calor.

Fig. 4.7. Evaporador diseñado para el R-404a.

Fig. 4.8. Evaporador diseñado para el R-410a.
4.6.Cálculo del condensador para el sistema de refrigerante R-134a.

4.6.1. Cálculo del coeficiente convectivo interno.

Para el caso del condensador, se ha de establecer las temperaturas del aire, para el refrigerante, por medio del diagrama P-h, se sabe que la temperatura de entrada al condensador es 44 °C, y la de salida es 40 °C (ver tabla 4.4). Para el aire, se tendrán temperaturas de entrada de 30 °C (temperatura ambiente) y 40 °C como temperatura de salida. Las propiedades del R-134a, a la temperatura media, pueden obtenerse de la tabla 4.6.

El flujo másico se calculó de igual manera con la ec. (3.5):

$$\dot{m}_{tubo} = \frac{0,0338 \ kg/s}{10}$$
$$\dot{m}_{tubo} = 0,00338 \ kg/s$$

Se calculó el flujo másico como se indica en la ec. (3.6), sabiendo que el área del tubo es:

$$A_{tubo} = \frac{\pi (0,008 \ m)^2}{4}$$
$$A_{tubo} = 50,265 \ \times 10^{-6} \ m^2$$

$$G = \frac{0,00657 \ kg/s}{50,265 \ \times 10^{-6} \ m^2}$$
$$G = 67,243 \ kg/m^2s$$

Se halló el número de Reynolds en fase líquida y fase de vapor con las ec. (3.14a) y (3.14b) respectivamente. Para este caso como la calidad del fluido va desde vapor saturado a líquido saturado, la calidad media, sería:

$$x = \frac{1+0}{2}$$
$$x = 0.5$$

$$Re_{v} = \frac{(67,243 \ kg/m^{2}s)(0,5)(0,008 \ m)}{(12,65 \times 10^{-6} \ Pa.s)}$$
$$Re_{v} = 21.262,5791$$

$$Re_{l} = \frac{(67,2436 \ kg/m^{2}s)(1-0,5)(0,008 \ m)}{(159,2 \times 10^{-6} \ Pa. \ s)}$$
$$Re_{l} = 1.689,5217$$

Como $Re_v > 15.000$, el régimen de flujo anular no se mantiene, y por lo tanto, el número de Nusselt viene dado por la expresión (3.37), para lo que se calculó tanto el multiplicador bifásico (3.38a) como el parámetro de Lockhart-Martinelli (3.18):

$$F = 5(3,259) + 5\ln(1 + 5(3,259)) + 2,5\ln(0,0031(1.689,5217)^{0,812})$$
$$F = 31,1545$$

$$X_{tt} = \left(\frac{1-0.5}{0.5}\right)^{0.9} \left(\frac{52,99 \ kg/m^3}{1.138,2 \ kg/m^3}\right)^{0.5} \left(\frac{159,2 \times 10^{-6} \ Pa.s}{12,65 \times 10^{-6} \ Pa.s}\right)^{0.1}$$
$$X_{tt} = 0,278$$

$$Nu_D = 0.15 \frac{(3.259)(1.689,52)^{0.9}}{(31,15)} \left(\frac{1}{0.278} + \frac{2.85}{(0.278)^{0.476}}\right)$$

$$Nu_D = 111,2404$$

Se obtuvo el coeficiente de convección para el fluido interno con la ec. (3.31):

$$h_i = \frac{(111,2404)(73,9 \times 10^{-3} \ W/mK)}{(0,008 \ m)}$$
$$h_i = 1.027,6014 \ W/m^2K$$

4.6.2. Cálculo del coeficiente convectivo externo.

Para esta sección, se tomó una velocidad promedio del aire de 4 m/s a la salida del condensador y a una temperatura de 40 °C, se procede a calcular T_f con la ec. (3.4).

$$T_f = \frac{313 K + 303 K}{2}$$

 $T_f = 308 K$

De la tabla del aire para $T_f = 308 K$ y a la presión atmosférica, se obtuvo los valores de las siguientes propiedades presentadas en la tabla 4.17. (Anexo I).

Tabla 4.17. Propiedades para el aire a 308 K y 1 atm

$k_{aire} (W/m.K)$	$ ho_{aire}~(kg/m^3)$	$c_p(J/kg.K)$	μ_{aire} (Pa.s)	Pr _{aire}
$26,86 \times 10^{-3}$	1,1458	1.007	$18,985 \times 10^{-6}$	0,712

Para los parámetros geométricos necesarios del banco de tubos se usó la tabla 4.12.

Se obtuvo Reynolds, con la ec. (3.28):

$$Re_{L_c} = \frac{(1,1458 \, kg/m^3)(4 \, m/s)(0,0151 \, m)}{(0,8115)(18,985 \times 10^{-6} \, Pa. \, s)}$$
$$Re_{L_c} = 4.485,9912$$

Capitulo 4. Evaluación termodinámica y diseño.

Se calculó la temperatura en la superficie con la ec. (3.30), tomando en cuenta que la conductividad térmica del cobre es de k = 401 W/mK (Anexo J) y que el calor total transferido viene dado por la ec. (3.36):

 $\dot{Q} = (1.000)(0.0338 kg/s)(423.8 kJ/kgK - 256.41 kJ/kgK)$

 $\dot{Q} = 5.657,7820 \, W$

$$T_{sup} = 315,3597 \, K + \frac{(5.657,7820 \, W)}{2\pi \, (401 \, W/mK)} \, . \ln\left(\frac{0,0096 \, m}{0,008 \, m}\right)$$

$$T_{sup} = 315,7691 \, K$$

Se procedió al cálculo del número de Nusselt, haciendo uso de la ec. (3.29):

Nu_{aire}

 $= (1,2319)(0,26)(4.485,9912)^{0,6}(1,5102)^{0,6}(34,8315)^{-0,15}(0,712)^{1/3} \left(\frac{308\,K}{315,7691\,K}\right)^{0,12}$

$$Nu_{aire} = 33,5285$$

Por último se obtuvo el coeficiente convectivo del aire con al ec. (3.31):

$$\bar{h}_{aire} = \frac{(33,5285)(26,86 \times 10^{-3})}{(0,0151\,m)}$$

$$\bar{h}_{aire} = 59,7213 W/m^2.K$$

4.6.3. Cálculo del área de transferencia de calor necesaria.

Para el cálculo del área de transferencia de calor, primero tuvo que calcular el coeficiente convectivo global, ec. (3.32):

$$U = \frac{1}{\frac{1}{1.027,6014 \ W/m^2.\ K} + \frac{1}{59,7213 \ W/m^2.\ K}}$$

$$U = 56,4411 W/m^2. K$$

Para calcular la diferencia de temperatura media logarítmica, se necesitan las temperaturas de los fluidos a la entrada y a la salida del evaporador, estas se pueden apreciar en la tabla 4.18.

Tabla 4.18 Temperaturas de entrada y salida para condensador de 134a.

T_{h_i} (°C)	<i>T_{h_o}</i> (°C)	$T_{c_i}(^{\circ}\mathrm{C})$	$T_{c_o}(^{\circ}\mathrm{C})$
44	40	30	40

Se calculó el promedio logarítmico de la diferencia de temperatura con la ec. (3.33):

$$\Delta T_{ml} = \frac{(44 \text{ °C} - 40 \text{ °C}) - (40 \text{ °C} - 30 \text{ °C})}{\ln\left[\frac{(44 \text{ °C} - 40 \text{ °C})}{(40 \text{ °C} - 30 \text{ °C})}\right]}$$
$$\Delta T_{ml} = 6,5481 \text{ °C} = 6,5481 \text{ K}$$

Finalmente se calculó el área de transferencia de calor necesaria para cumplir con la carga térmica calculada anteriormente, usando la ec. (3.34):

$$A_s = \frac{(5.657,7820 W)}{(56,4411 W/m^2. K)(6,5481 K)}$$
$$A_s = 15,3085 m^2$$

En la figura 4.9 se muestra un esquema con las especificaciones del intercambiador de calor diseñado.

Fig. 4.9. Condensador diseñado para el R-134a.

4.7.Cálculo del enfriador de gas para el sistema de refrigerante R-744.

4.7.1. Cálculo del coeficiente convectivo interno.

Para el caso del enfriador de gas, se ha de establecer las temperaturas del aire y para el refrigerante. Por medio del diagrama P-h, se sabe que la temperatura de entrada al enfriador de gas es 70 °C, y la de salida es 40 °C. Para el aire, se estableció temperaturas de entrada de 30 °C (temperatura ambiente) y 50 °C como temperatura de

salida. Las propiedades termofísicas del R-744, para los cálculos, se tomaron de la tabla 4.3.

Primero fue necesario asumir una temperatura, y luego realizar un proceso de iteración, esto porque en esta sección, fue necesaria la obtención de la densidad a la temperatura de la pared interna, se comenzó con un valor de 46 °C, hasta obtener los valores correctos.

El flujo másico se calculó de igual manera con la ec. (3.5):

$$\dot{m}_{tubo} = \frac{0.0454 \ kg/s}{10}$$

$$\dot{m}_{tubo} = 0,00454 \, kg/s$$

Se halló el número de Reynolds con la ec. (3.40).

$$Re_D = \frac{4(0,00454 \ kg/s)}{\pi(0,008 \ m)(25,3 \times 10^{-6} \ N. \ s/m^2)}$$

$$Re_D = 28.559,8198$$

Se obtuvo el valor de \overline{Cp} con la ec. (3.41):

$$\overline{Cp} = \frac{338.000 \ J/kg - 200.000 \ J/kg}{343 \ K - 313 \ K}$$

$$Cp = 4.600 \ J/kg \, K$$

Se obtuvo la densidad del CO₂ a 329,0528 K, la cual fue:

$$\rho_w = 317 \ kg/m^3$$

Ahora el número de Nusselt. ec. (3.39):

$$Nu_D = 0,001546 \times (28.559,8198)^{1,054} \times (2,26)^{0,635} \times \left(\frac{317 \ kg/m^3}{325 \ kg/m^3}\right)^{0,367} \times \left(\frac{4.600 \ J/kg \ K}{3.940 \ J/kg \ K}\right)^{0,4}$$

$$Nu_D = 135,9461$$

Se obtuvo el coeficiente convectivo con la ec. (3.31):

$$h_i = \frac{135,9461 \times 0,044 \, W/m. \, K}{0,008 \, m}$$

$$h_i = 747,7036 \ W/m^2.K$$

4.7.2. Cálculo del coeficiente convectivo externo.

Para esta sección, se tomó una velocidad promedio de 4 m/s a la salida del condensador y a una temperatura de 50 °C; se procedió a calcular T_f con la ec. (3.4).

$$T_f = \frac{323 \ K + 303 \ K}{2}$$
$$T_f = 313 \ K$$

De la tabla del aire para $T_f = 313 K$ y a la presión atmosférica, se obtuvo los valores de las propiedades presentadas a continuación (Anexo I).

 k_{aire} (W/m.K) ρ_{aire} (kg/m³) c_p (J/kg.K) μ_{aire} (Pa.s) Pr_{aire} 27,22 × 10^{-3}1,12721.00719,22 × 10^{-6}0,711

Tabla 4.19. Propiedades para el aire a 313 K y 1 atm

Para los parámetros geométricos del banco de tubos, se hizo uso de la tabla 4.12, y se continuó con el cálculo del número de Reynolds, con ayuda de la ec. (3.28):

$$Re_{L_c} = \frac{(1,1272 \ kg/m^3) \times (4 \ m/s) \times (0,0151 \ m)}{(0,8115) \times (19,22 \times 10^{-6} \ Pa. s)}$$

 $Re_{L_c} = 4.359,2101$

Se logró calcular la temperatura en la superficie (ec. 3.30), tomando en cuenta que la conductividad térmica del cobre es de k = 401 W/mK (Anexo J) y que el calor total transferido viene dado por la ec. 3.36:

$$\dot{Q} = (1.000)(0.0454 \, kg/s)(451 \, kJ/kgK - 312.8 \, kJ/kgK)$$

 $\dot{Q} = 13.129 \, W$

$$T_{sup} = 329,0528 K + \frac{(13.129 W)}{2\pi (401 W/mK)} \cdot \ln\left(\frac{0,0096 m}{0,008 m}\right)$$
$$T_{sup} = 329,5068 K$$

Con todos estos factores una vez obtenidos, se procedió al cálculo del número de Nusselt, haciendo uso de la Ec. 3.29:

Nu_{aire}

$$= (1,2319)(0,26)(4.359,2101)^{0,6}(1,5102)^{0,6}(34,8315)^{-0,15}(0,711)^{1/3} \left(\frac{313 K}{329,5068 K}\right)^{0,12}$$

$$Nu_{aire} = 32,6059$$

Por último se obtuvo el coeficiente convectivo del aire con al ec. (3.31):

$$\bar{h}_{aire} = \frac{(32,6059)(27,22 \times 10^{-3} W/m.K)}{(0,0151 m)}$$

$$\overline{h}_{aire} = 58,8563 W/m^2.K$$

4.7.3. Cálculo del área de transferencia de calor necesaria.

Para el cálculo del área de transferencia de calor, primero se calculó el coeficiente convectivo global, ec. (3.32):

$$U = \frac{1}{\frac{1}{747,7036 \ W/m^2.\ K} + \frac{1}{58,8563 \ W/m^2.\ K}}}$$
$$U = 54,5614 \ W/m^2.\ K$$

Para calcular el promedio logarítmico de la diferencia de temperatura, se necesitan las temperaturas de los fluidos a la entrada y a la salida del evaporador; éstas se pueden apreciar en la tabla 4.20.

Tabla 4.20. Temperaturas de entrada y salida para el enfriador de gas de R-744.

T_{h_i} (°C)	T_{h_o} (°C)	$T_{c_i}(^{\circ}C)$	$T_{c_o}(^{\circ}\mathrm{C})$
70	40	30	50

Se calculó la diferencia de temperatura media logarítmica con la ec.

(3.24):

$$\Delta T_{ml} = \frac{(70 \,^{\circ}\text{C} - 50 \,^{\circ}\text{C}) - (40 \,^{\circ}\text{C} - 30 \,^{\circ}\text{C})}{\ln\left[\frac{(70 \,^{\circ}\text{C} - 50 \,^{\circ}\text{C})}{(40 \,^{\circ}\text{C} - 30 \,^{\circ}\text{C})}\right]}$$

$$\Delta T_{ml} = 14,427 \text{ °C} = 14,427 K$$

Finalmente se calculó el área de transferencia de calor necesaria para cumplir con la carga térmica establecida, usando la ec. (3.34):

$$A_s = \frac{13.129 W}{(54,5614 W/m^2. K)(14,427 K)}$$
$$A_s = 7,9708 m^2$$

En la figura 4.10 se muestra un esquema con las especificaciones del intercambiador de calor diseñado.

Fig. 4.10. Enfriador de gas diseñado para el CO₂.

4.8. Cálculo de los condensadores para los sistemas de refrigeración con R-404a y R-410a.

4.8.1. Cálculo del coeficiente convectivo interno.

En el caso de los condensadores para R-404a y R-410a, se siguió la misma metodología de cálculo que se usó para el condensador del R-134a. Las propiedades de ambos refrigerantes se tomaron de la tabla 4.8.

En la tabla 4.21 se presentan los resultados de los cálculos del coeficiente convectivo interno para ambos condensadores:

	R-404a	R-410a
$\dot{m}_{tubo}~(kg/s)$	0,00451	0,00317
$G\left(kg/m^2s\right)$	89,7236	63,0651
x	0,5	0,5
Re_l	3.631,0276	2.846,2212
Re_v	26.556,24567	16.588,4517
$rac{1}{X_{tt}}$	2,4242	2,2977
F	30,3840	24,8761
Nu_D	154,8478	109,53
$h_i (W/m^2 K)$	1.161,8423	1.177,0678

Tabla 4.21. Cálculos internos para el condensador de R-404a y R-410a.

4.8.2. Cálculo del coeficiente convectivo externo y área de transferencia de calor requerida.

Al igual que con los cálculos para los coeficientes internos, se siguió la misma metodología del condensador del R-134a al realizar los cálculos para el coeficiente externo y área de transferencia de calor del equipo para ambos refrigerantes.

Para los cálculos se usó los datos disponibles en las tablas 4.5 y 4.6 para el cálculo de la carga térmica del condensador y las propiedades del aire a las condiciones de trabajo en la tabla 4.17.

En la tabla 4.22 se muestran los resultados obtenidos para el condensador de los refrigerantes R-404a y R-410a.

	R-404a	R-410a
<i>Q</i> (<i>W</i>)	5.637,5	5.636,26
$T_{sup}\left(K ight)$	315,728	315,728
Re _{Lc}	4.485,99	4.434,9040
Nu _{aire}	33,5290	33,0347
$\bar{h}_{aire}~(W/m^2.K)$	59,7222	59,1264
$U(W/m^2.K)$	56,8024	56,2984
ΔT_{ml} (K)	6,5481	8,9628
$A_s(m^2)$	15,1566	11,1699

Tabla 4.22. Cálculos externos para el condensador de R-404a y R-410a.

En las figuras 4.11 y 4.12 se muestran los esquemas con las especificaciones de los intercambiadores de calor diseñados.

Fig. 4.11. Condensador diseñado para el R-404a.

Fig. 4.12. Condensador diseñado para el R-410a.

4.9.Longitud de los intercambiadores de calor.

Se trabajará con los datos de la tabla 4.16, y con las ecuaciones 3.42 y 3.43, a continuación se muestra un cálculo de ejemplo para el evaporador de R-134a, y en la tabla 4.23 se muestran los demás valores obtenidos.

$$R_{2c} = \left(\frac{0,0096\,m}{2} + 0,015\,m\right) + \frac{(0,0003\,m)}{4}$$

$$R_{2c} = 0,019875 m$$

$$A = 434,78 \ aletas/m \left[2\pi \left((0,019875 \ m)^2 - \left(\frac{0,0096 \ m}{2} \right)^2 \right) + \pi (0,0096 \ m) (0,002 \ m) \right]$$

$$A = 1,0424 \ \frac{m^2}{m}$$

Se debe notar que el numerador de las unidades, indica los metros cuadrados superficiales de los tubos aleteados y el denominador representa los metros de tubo necesarios.

$$L_{equipo} = \frac{4,8711 \, m^2}{\left(1,0424 \, \frac{m^2}{m}\right) (10 \, tubos)}$$

$$L_{equipo} = 0,4673 m/tubo$$

El resultado de la ecuación anterior, indica la longitud total del equipo, el hecho de que las unidades se muestren en m/tubo, solo indica que por cada tubo, se usaran solo 0,405 m. En la siguiente tabla, se presenta una comparación del valor del área de transferencia de calor que requiere cada intercambiador de calor diseñado y la longitud del mismo para cada refrigerante:

Equipo	Área calculada (m^2)	Longitud del equipo (<i>m</i>)
Evaporador (R-134a)	4,8711	0,4673
Evaporador (R-744)	4,7603	0,4567
Evaporador (R-404a)	5,1715	0,4961
Evaporador (R-410a)	4,8215	0,4625
Condensador (R-134a)	15,3085	1,4801
Enfriador de gas (R-744)	7,9708	0,7707
Condensador (R-404a)	15,1566	1,4655
Condensador (R-410a)	11,1699	1,08

Tabla 4.23. Cálculos de longitudes para los distintos equipos.

4.10. Selección de los demás componentes.

4.10.1. Selección del compresor.

Para la selección del compresor, basta con sólo seguir los pasos del marco metodológico. Dado que este trabajo no se enfoca en el diseño de este tipo de equipos, sólo se seleccionará el más adecuado para nuestro sistema. Sabiendo que:

$$Q_0 = 5.000 W$$

 $T_0 = 10 ^{\circ}C$
 $T_{ga} = 40 ^{\circ}C$

El más adecuado según el catálogo de compresores Bock (Anexo K), es el siguiente:

MARCA	BOCK COMPRESSORS	
MODELO	RKX26/31-4 CO ₂ T	
ACEITE	BOCK C120E	
NÚMERO DE CILINDROS	6	
NÚMERO DE POLOS	4	
CAPACIDAD DE Q_0	9600 W	

Tabla 4.24. Especificaciones técnicas del compresor seleccionado.

4.10.2. Selección de válvula de expansión.

Para la selección de la válvula de expansión, se hace necesario igualmente, considerar la temperatura de evaporación, y la caída de presión que se necesita, en este caso es:

$$\Delta P = 10 MPa - 3 MPa$$
$$\Delta P = 7 MPa$$

Por lo que la válvula más adecuada según el catálogo de la empresa Danfoss (Anexo L), para el sistema de acondicionamiento de ambiente con CO_2 , es la especificada en la tabla 4.25:

MARCA	DANFOSS A/S
MODELO	CCM-10

Tabla 4.25. Especificaciones de la válvula de expansión seleccionada.

Esta válvula además puede ser usada para una gran variedad de intervalos de presiones y temperaturas.

CAPÍTULO 5

Análisis de resultados y conclusiones.

Una vez llevada a cabo toda la metodología que se planteó para cumplir los objetivos establecidos en esta investigación, obteniendo los resultados necesarios para realizar las comparaciones desde el punto de vista del desempeño o eficiencia termodinámica, además de las exigencias de diseño de los equipos para ciclos de refrigeración de compresión de vapor en iguales condiciones trabajando con los refrigerantes convencionales y con CO_2 . Dichos resultados de analizaron y se concluyó en base a ellos.

5.1. Análisis de resultados.

Se evaluaron las propiedades del CO_2 y refrigerantes convencionales (R-134a, R-404a y R-410a), en un ciclo de refrigeración simple a condiciones que se establecieron parecidas, para poder realizar una comparación valida de la eficiencia o COP que entrega el CO_2 contra la que entrega los refrigerantes convencionales.

En la tabla 5.1 se observan las condiciones a las que se evaluó el ciclo transcrítico con CO_2 y los ciclos subcríticos con los refrigerantes.

Deserinción	Refrigerantes		
Descripcion	CO ₂	R-134a, R-404a y R-410a	
Temperatura de evaporación isobárica	10 °C	10 °C	
Temperatura de condensación isobárica		40 °C	
Presión constante en el enfriador de gas	10 MPa		
Carga térmica en el evaporador	5 kW	5 kW	
Eficiencia isentrópica del compresor	1	1	

Tabla 5.1. Condiciones de evaluación de los ciclos de refrigeración.

Con las condiciones establecidas en los ciclos de refrigeración se obtuvieron las propiedades para todos los refrigerantes a la salida del evaporador (Punto 1), donde se consideró que el fluido está como vapor saturado para los cuatro refrigerantes. A la salida del compresor (Punto 2), donde el CO_2 está como fluido supercrítico ya que el compresor eleva su presión por encima del punto crítico y el resto de los refrigerantes se encuentran como vapor sobrecalentado. El "Punto 3" se encuentra a la salida del condensador en el caso de los refrigerantes convencionales y del enfriador de gas para el CO_2 , donde se consideró que los fluidos salen como líquido saturado en el caso del R-134a, R-404a y R-410a y el CO_2 en este punto aún se encuentra en estado supercrítico. Por último, los fluidos experimentan una expansión isoentálpica desde la presión de alta hasta la presión de baja antes de entrar al evaporador (Punto 4).

En los puntos definidos anteriormente se obtuvieron las propiedades de los cuatro refrigerantes usando diferentes herramientas como diagrama P-h, tablas termodinámicas, entre otras, obteniendo así las propiedades necesarias para calcular la eficiencia de los ciclos de refrigeración y diseño de los intercambiadores de calor respectivos de cada refrigerante, a las condiciones establecidas con el fin de realizar posteriormente una comparación entre los resultados obtenidos con el CO_2 y los obtenidos para los refrigerantes convencionales.

En la siguiente tabla se observan las propiedades obtenidas para los cuatro refrigerantes en el evaporador, donde todos se encuentran en mezcla a una temperatura isobárica de evaporación de 10 °C:

Propiedad	CO ₂	R-134 a	R-404 a	R-410 a
$\rho_l (kg/m^3)$	861,1	1.261	1.110,4	1.128,34
$ ho_v (kg/m^3)$	135,13	20,23	42,24	42,04
μ_l (Pa.s)	$82,6 imes 10^{-6}$	$238,8 \times 10^{-6}$	$155,55 imes 10^{-6}$	$149,53 imes 10^{-6}$
μ_v (Pa.s)	$16,06 imes 10^{-6}$	$11,15 \times 10^{-6}$	$11,35 imes 10^{-6}$	$12,63 imes 10^{-6}$
$h_f (kJ/kg)$	225,73	213,58	214,11	215,46
$h_g \left(kJ/kg \right)$	422,88	404,32	370,77	423,98
$h_4\left(kJ/kg ight)$	312,8	256,41	260	266,2
$h_1 \left(kJ/kg \right)$	422,88	404,32	370,77	423,98
$h_{fg} \left(kJ/kg \right)$	197,15	190,74	156,66	208,52
$k_l (W/mK)$	$98,1 imes 10^{-3}$	87,6 × 10 ⁻³	$73,16 imes 10^{-3}$	$108,\!84 imes 10^{-3}$
$c_p \left(kJ/kgK \right)$	2,998	1,370	1,438	1,578
$\sigma (N/m)$	$2,76 \times 10^{-3}$	$10,14 \times 10^{-3}$	$6,34 \times 10^{-3}$	$7,52 \times 10^{-3}$
Pr	2,5243	3,375	3,057	2,169

Tabla 5.2. Propiedades de los refrigerantes en el evaporador.

Al comparar las propiedades del CO_2 obtenidas con el resto de los refrigerantes se pueden observar varias cosas:

La diferencia de entalpías (h₁ - h₄) en la evaporación es menor que en el caso de los refrigerantes R-134a y R-410a, lo que ocasiona que para cumplir con una misma carga térmica, sea necesario un mayor flujo másico de refrigerante en el sistema. Por otro lado es muy similar a la diferencia de entalpías que presenta el R-404a.

- Observando los valores de calor específico " c_p ", viscosidad en estado líquido " μ_l " y en vapor " μ_v ", número de Prandtl "Pr" y tensión de la superficie del fluido " σ ", que son propiedades que influyen en la transferencia de calor por convección, se nota que el CO₂ posee un valor mucho mayor en cuanto a la capacidad calórica con respecto del resto de los refrigerantes; presenta un valor ligeramente mayor de viscosidad en estado de vapor pero menor en gran proporción en cuanto a la viscosidad en estado líquido; los números de Prandtl son similares para los cuatro fluidos; presenta una tensión superficial menor, lo que propicia a una mejor ebullición nucleada del fluido. Al comparar estos valores se observa que el CO₂ presenta una mayor facilidad para la transferencia de calor en las condiciones evaluadas en relación al resto de los refrigerantes evaluados.
- Con respecto a la densidad, el valor de la densidad de líquido es menor en 30% aproximadamente que en los otros refrigerantes, pero la densidad de vapor, siendo el estado que más predomina en el sistema, es mayor en un 320% aproximadamente. Como el fluido entra al compresor como vapor saturado y este eleva su presión hasta llevar al fluido a vapor sobrecalentado, y a estado supercrítico en el caso del CO₂, realizando una comparación, éste requiere comprimir un volumen tres veces menor de CO₂ que para el resto de los refrigerantes con una misma cantidad de masa. Como consecuencia, los sistemas que trabajan con este refrigerante requieren compresores más pequeños, ya que el desplazamiento del fluido en la compresión es menor debido al volumen que ocupa, aunque estos sistemas transcríticos requieran un flujo másico mayor, en comparación con los refrigerantes convencionales, haciendo que sean más eficientes los compresores de los sistemas transcríticos.

Para el cálculo del *COP* de los ciclos de refrigeración con los cuatro fluidos que se están evaluando, se calculó el flujo másico de refrigerante y el trabajo que consume el sistema, aplicando la primera ley de la termodinámica tanto en el evaporador para obtener el flujo másico con la carga térmica establecida de 5 kW,

como en el compresor para obtener el trabajo que consume el mismo. En la tabla 4.9 se presenta una comparación de los valores de flujo másico, trabajo que consume el compresor, y *COP* para los ciclos de refrigeración que trabajan con cada uno de los refrigerantes. Con dichos valores se observa lo siguiente:

- El flujo másico depende de la carga térmica y las entalpías del fluido de entrada y salida del evaporador, como la carga térmica se estableció como un valor fijo, entonces, a medida que la diferencia de entalpías sea mayor, el flujo másico es menor. Debido a que la diferencia de entalpía que hay entre la entrada y la salida del evaporador para el CO₂ es menor a la del R-134a y R-410a, el flujo másico que requiere el CO₂ para la carga térmica de 5 kW es mayor, por otro lado los valores de flujo másico y diferencia de entalpía son parecidos a los del R-410a.
- El trabajo que consume el compresor depende de la diferencia de entalpías entre la entrada y salida del mismo y el flujo másico del refrigerante. En las tablas 5.3 y 5.4 se comparan los valores de diferencias de entalpías en el compresor y flujo másico de cada refrigerante:

Dofrigoranto	Diferencia de
Kenngerante	Entalpía (<i>kJ/kg</i>)
CO_2	28,12
R-134a	19,48
R-404a	14.23
R-410a	20,02

Tabla 5.3. Diferencia de entalpías en el compresor de los refrigerantes.

Dofrigoropto	Trabajo consumido	
Kenngeränte	por el compresor (kW)	
CO ₂	1,27	
R-134a	0,66	
R-404a	0,64	
R-410a	0,63	

Tabla 5.4. Trabajo consumido por el compresor por cada refrigerante.

Se observó que la diferencia de entalpías y flujo másico del CO_2 es mayor que el resto, lo que quiere decir que el trabajo que consume este compresor es mayor por un 100% aproximadamente al de los demás refrigerantes. Esto se presenta ya que el compresor debe elevar la presión del fluido a un alto valor, siendo la presión de alta del CO_2 de 10 MPa, cuando en el caso de los otros refrigerantes trabajan con una presión de alta de 1 MPa (R-134a), 1,83 MPa (R-404a) y 2,426 MPa (R-410a).

• Con respecto al *COP*, el cual depende de la carga térmica del sistema y el trabajo consumido por el compresor, el CO₂ es más eficiente en otras aplicaciones como la calefacción, ya que la relación que hay entre la energía que entrega al ambiente y el trabajo consumido por el compresor es mayor que la relación que hay entre la energía absorbida por el sistema y el trabajo del compresor. El *COP* es dependiente de la presión de alta del sistema, ya que mientras que mayor sea la presión en el enfriador de gas, las isotermas en el diagrama P-h se hacen más inclinadas, lo que lleva que a medida que la temperatura de ambiente y la presión sea mayor, menos eficiente es el ciclo transcrítico. En la tabla 5.5 se observa la comparación de los valores obtenidos:

Refrigerante	СОР
CO ₂	3,93
R-134a	7,57
R-404a	7,81
R-410a	7,94

Tabla 5.5. COP para cada refrigerante.

Ya que el trabajo consumido por el compresor del CO_2 es aproximadamente es el doble al del resto de los compresores, se observó que la eficiencia o *COP* del ciclo con este refrigerante es alrededor de la mitad de la eficiencia del resto de los refrigerantes.

Referente a el diseño de los intercambiadores de calor, es decir, evaporador y enfriador de gas para el ciclo de refrigeración transcrítico con CO₂, y evaporador y condensador para el resto de los refrigerantes en un ciclo subcrítico, se definieron varios parámetros. Uno de ellos fue el diámetro de los tubos, donde para la geometría de los mismos fue tomada de la referencia de un trabajo realizado anteriormente, donde se diseñaron intercambiadores para un ciclo transcrítico en condiciones similares a las que se establecieron en este trabajo, asegurando así que la geometría usada para los tubos es acertada. Otro parámetro son las aletas anulares, donde se establecieron dimensiones de acuerdo a la distribución del banco de tubos que se seleccionó, la cual fue de un banco de tubos de configuración alineada, aprovechando el espacio disponible entre los tubos del intercambiador y así obtener una mayor área de transferencia de calor por metro de longitud del equipo. El material que se seleccionó fue el cobre, un material comúnmente usado en los equipos actuales y que no presenta problemas con el CO₂, ya que este es un gas inerte y no presenta reacciones con este tipo de material, además de su buena conductividad térmica que favorece la transferencia de calor hacia el aire por medio de los tubos y aletas anulares.

Para el diseño de los evaporadores se partió del hecho que los cuatro fluidos se encuentran en mezcla en la etapa de evaporación, por lo tanto fue necesario usar correlaciones para calcular el coeficiente convectivo de un fluido dentro de un tubo con cambio de fase. En el caso de los condensadores para los refrigerantes convencionales, los cuales se encuentran en estado subcrítico, se diseñaron de la misma forma que los evaporadores ya que los refrigerantes se encuentran en mezcla, presentándose la condensación. En cuanto al enfriador de gas, para el coeficiente convectivo dentro del tubo, se usó una correlación específica para un flujo supercrítico dentro de un tubo, ya que éste presenta una naturaleza distinta al resto de los refrigerantes por estar encima del punto crítico.

En la tabla 4.23, se observa la comparación de las áreas obtenidas para todos los intercambiadores de calor diseñados. Con respecto a la comparación entre los intercambiadores de calor diseñados, se nota que:

- En cuanto al enfriador de gas, el área de transferencia de calor es considerablemente menor a la que requiere el condensador del R-134a, R-404a y R-410a. La diferencia entre el área requerida para el enfriador de gas y los condensadores del R-134a y R-404a es aproximadamente menor en un 50% y en un 30% al área del condensador del R-410a. Esto se presenta gracias a las propiedades que caracterizan al CO₂ en estado supercrítico, las cuales favorecen a la transferencia de calor por convección del fluido dentro de un tubo, además de una diferencia de temperaturas a la entrada y salida del intercambiador de calor mayor a las que presentan los refrigerantes en sistemas subcríticos.
- En relación al los evaporadores, como todos poseen la misma carga térmica, la diferencia de temperaturas a la entrada y salida de intercambiador de calor son iguales y las propiedades del CO_2 en estado de mezcla no son tan favorables como cuando se encuentra en estado supercrítico, el evaporador del CO_2 requiere un área menor de 0,1 m^2 aproximadamente que el resto de los evaporadores diseñados. Al analizar estos resultados en cuando al área requerida por los evaporadores, se nota

que el CO_2 posee propiedades similares en estado de mezcla a las propiedades que presentan los refrigerantes convencionales evaluados.

Por último se seleccionó el compresor del catálogo en línea del fabricante alemán "Bock Compressors", según las condiciones de trabajo del sistema y comparándolas con las condiciones de trabajo de los equipos expuestos en el catálogo, dichos parámetros de selección fueron la carga térmica del equipo, y la temperatura de evaporación. El compresor seleccionado posee una carga térmica máxima de 9600 W, 6 cilindros y 4 polos y especifica qué tipo de aceite requiere para su funcionamiento, siendo el aceite "Bock C120E", producido por la misma empresa. Aunque dada la naturaleza del CO₂, al ser un gas inerte puede trabajar con cualquier lubricante sin presentar alguna reacción no deseada. El modelo del compresor es "RKX26/31-4 CO_2 T".

De igual forma que con el compresor, se seleccionó una válvula de expansión del catálogo en línea de la empresa danesa "Danfoss", usando como criterio de selección el rango de la caída de presión en la válvula, que para este ciclo es de 7 MPa. Para estas condiciones de trabajo, el modelo ideal que ofrece el catálogo es la válvula de expansión "CCM-10".

5.2. Conclusiones.

Se evaluó el CO₂ en un sistema de refrigeración de compresión de vapor para un ciclo transcrítico usando como herramienta los diagramas P-h y tablas de propiedades del fluido, además de herramientas de cálculo de propiedades de los fluidos disponibles en la Web. Las propiedades termofísicas obtenidas, como la entalpía del fluido, fueron evaluadas a las condiciones en los puntos que definen un ciclo de refrigeración simple, los cuales son a la salida del evaporador, entrada al enfriador de gas o salida del compresor, salida del enfriador de gas, y entrada al evaporador. Según las propiedades que se obtuvieron, el CO₂ en estado supercrítico resulta tener características especiales que lo diferencian del resto de los refrigerantes, ya posee ciertas ventajas en cuanto a la capacidad de transferencia de calor con convección. En cuanto a este refrigerante cuando se encuentra en mezcla durante la evaporación, presenta propiedades y capacidad de transferencia de calor similar en comparación al resto de los refrigerantes evaluados. Además presenta ventajas con respecto a los compresores, los cuales deben realizar un desplazamiento volumétrico menor de refrigerante que los compresores en sistemas convencionales o subcríticos, debido a que el CO₂ posee una densidad de vapor bastante alta en comparación a la que presentan los refrigerantes convencionales en las condiciones que trabajan. Por otra parte, este refrigerante presenta ventajas desde el punto de vista ambiental, siendo un fluido no tóxico, no inflamable, y pertenece a la naturaleza por lo tanto no es necesario producirlo, sino que se toma del ya existente en el aire, bajando los costos en los sistemas de refrigeración, además de parar la contaminación del ambiente por fugas de refrigerantes.

Se comparó mediante un estudio teórico un ciclo transcrítico simple que usa CO_2 con ciclos subcríticos simples con refrigerantes convencionales, tomando como criterio de comparación la eficiencia termodinámica o *COP* de los sistemas. Aunque la eficiencia que presenta el ciclo transcrítico es bajo, ya que la relación que existe entre la energía absorbida por el sistema y el trabajo consumido por el compresor es menor a la que presentan los sistemas convencionales, es posible aumentarla con tan solo hacerle ciertas modificaciones al ciclo de refrigeración simple.

Se diseñó el evaporador y el enfriador de gas que requiere el sistema transcrítico con CO₂, además de los evaporadores y condensadores de los sistemas subcríticos que usan los refrigerantes convencionales. Se usó los mismos parámetros de diseño como número de tubos, configuración del banco de tubos, dimensiones de los tubos y geometría de las aletas anulares en todos los diseños para lograr una comparación real. Al comparar los resultados de área de transferencia de calor y longitud del equipo, se observó que para el CO₂, el enfriador de gas es considerablemente de menor tamaño que los condensadores diseñados de los ciclos

subcríticos y en cuanto al evaporador requerido es ligeramente más pequeño que los demás evaporadores diseñados. Ya que las dimensiones del evaporador son muy similares, mucho menores en comparación al enfriador de gas con los condensadores diseñados, y el compresor es de menor tamaño que los actuales, un equipo real que use CO_2 es físicamente de menor tamaño a un equipo de aire acondicionado convencional, pudiendo estos nuevos sistemas de refrigeración reemplazar fácilmente a los que usan los refrigerantes actuales.

Se seleccionó los otros componentes fundamentales de un ciclo de refrigeración, siendo estos el compresor y la válvula de expansión. Para su selección se usó catálogos en línea de empresas que producen equipos para aplicaciones de refrigeración, donde ya han comenzado a desarrollar equipos para trabajar con sistemas transcríticos para ser usados con CO₂. Esto quiere decir que se puede construir un ciclo de refrigeración transcrítico, y posiblemente pronto ya se comiencen a ver en el mercado equipos de aire acondicionado y otras aplicaciones de la refrigeración.

5.3. Recomendaciones

Para seguir profundizando en el tema de los ciclos de refrigeración transcríticos usando como refrigerante el CO_2 se recomienda realizar estudios en varios puntos. Las investigaciones que se recomiendan son:

• Estudiar y evaluar posibles modificaciones que se le pueden realizar a los ciclos transcríticos simples para elevar el COP que entregan y compararlo con el entregado por un ciclo transcrítico sin modificaciones. Siendo una de estas modificaciones, colocar un intercambiador de calor interno donde el refrigerante que sale del enfriador de gas a la presión de alta, ceda calor al refrigerante que sale del evaporador a la presión de baja. Esto eleva la eficiencia del sistema, ya que el fluido al salir del enfriador de gas disminuye

su temperatura antes de entrar a la válvula de expansión, aumentando la diferencia de entalpías dentro del evaporador y por consiguiente, aumentando la carga térmica en el evaporador para un mismo flujo másico, además aumenta la temperatura del refrigerante antes de entrar al compresor gracias al calor cedido por el refrigerante a alta presión, y disminuyendo el trabajo realizado por el compresor para elevar la presión del fluido.

- Reescribir la ecuación para el cálculo del coeficiente global de transferencia de calor (ec. 3.32), involucrando todas las resistencias térmicas referidas al área externa o área interna de transferencia de calor del tubo, ya que por tratarse de un tubo aleteado estas son distintas. Además que incluya el factor de ensuciamiento.
- Diseñar nuevos intercambiadores de calor con nuevas configuraciones geométricas que reduzcan el tamaño físico de los equipos.
- Evaluar el uso del ciclo transcrítico con CO₂ en cascada para aplicaciones de refrigeración industrial y comparar su desempeño con los sistemas actuales que usan como refrigerante el amoniaco.
- Diseñar un sistema transcrítico para ser usado en aplicaciones de calentamiento de agua.
- Construir un ciclo de refrigeración transcrítico con CO₂ para realizar pruebas experimentales.

Bibliografía

Antonijevic, D. (2008). Carbon dioxide as the replacement for synthetic refrigerants in movile air conditioning. *Thermal science*. *Vol 12*, 55-64.

ASHRAE. (2009). American society of heating refrigerating and air-conditioning engineers Inc, Fundamentals Handbook, SI Edition. Atlanta, Georgia.

Cavallini, A. (2007). Properties of CO2 as refrigerant. Pandova, Italia.

Çengel, Y., y Boles, M. (2006). Termodinámica "Quita Edición". The McGraw - Hill.

Chen, J. (1966). Correlation for Boiling Heat Transfer to Saturated Liquids in Convective Flow. Int. Eng. Chem. Process Design and Development, 5-322.

Comité de electricidad, e. y. (2010). Recuperado el 2010, de http://www.codelectra.org/site/paghist.htm

Danfoss. (2008). Transcritical Refrigeration Systems with Carbon Dioxide. RA marketing/MWA.

Dittus, y Boelter. (1930). L.M.K. University California Publs. Eng., Vol.2, 443.

Foster, P., y Zuber, N. (1974). Point of Vapor Generation and Vapor Void Fraction. 5th Int. Heat Transfer Conf.

Hinde, D., Zha, S., y lan, L. (2009). Carbon dioxide in North American supermarkets. *ASHRAE Journal. Vol 51*, 18-26.

Incropera, F., y DeWitt, D. (1999). *Fundamentos de Trasferencia de Calor "Cuarta Edición"*. México: Prentice Hall.

IRC, T. I. (05 de 2011). Recuperado el 5 de 05 de 2011, de http://www.irc.wisc.edu/

Kern, D. Q. (1999). *Procesos de transferencia de calor*. México: Compañía Editorial Continental.

Kraus, A., y Kern, D. (2001). Extended Surface Heat Transfer. John Wiley y Sons, inc.

Kreith, F. (2000). *The CRC Handbook of Thermal Engineering*. Boca Ratón: CRC Press LLC.

Lockhart, y Martinelli. (1949). Chem. Eng. Prog. Vol. 45, 39-48.

McKetta, J. J. (1992). Heat Transfer Design Methods.

Molina, M., y Rowland, F. (1974). Stratospheric sink for chlorofluoromethanes; chlorine atom catalysed destruction of ozone. *Nature*, 810-812.

Monticelli, G. (2009). Estudio y Modelado de una Bomba de Calor con CO2.

Sarkar, J. R., y Goutam, M. B. (2006). Comparison and validation of heat transfer correlations for in-tube cooling of supercritical. *Heat and Mass Transfer Conference*, (págs. 4-6).

Spang, D. B. (2006). Correlations for Convective Heat Transfer. *The Chemical Engineers*.

Spindler, K. (2006). A review on heat transfer correlations for supercritical carbon dioxide under cooling conditions. *7th IIR Gustav Lorentzen Conference on Natural Working Fluids*. Trondheim, Norway.

Taira, S., Nakayama, H., Kumakura, E., Numata, M., y Sakitani, K. (2010). The development of heat pump water heaters using CO2 refrigerant. *2010 Internacional sympsium on next-generation air conditioning and refrigeration technology*. Tokio, Japan.

Traviss., Rohsenow, y Baron. (1973). Forced convection condensation inside tubes: A heat transfer equation for condenser design. *ASHRAE Transactions Vol.* 79, 6-157.

Universidad Politécnica de Valencia, D. d. (2010). *Investigación y modelado de sistemas térmicos*. Recuperado el 2010, de http://www.imst.upv.es

Zhao, T., y Liao, S. (2002). Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide. *Transactions of the ASME*, 413-420.

ANEXOS

ANEXO A

<u>ANEXO</u>	B

		Ref	rigeran	t 134a ((1,1,1,2-	Tetraflu	oroeth	ane) Pr	operti	es of Sa	aturate	d Liqu	id and	Satura	ated Va	por		
_	Pres-	Density,	Volume,	Enth	alpy,	Entr	opy,	Specif	ic Heat		Veloo	city of	Visco	osity,	Therma	l Cond.,	Surface	
Temp.,*	sure, MPa	kg/m ³	m ³ /kg	kJ/	Vanor	kJ/(k	g·K) Vanor	c _p , kJ/	(kg·K)	c_p/c_v	Soun	d, m/s	μr Liquid	a-s Nenor	mW/(Manar	Tension,	Temp.,*
-103 308	.Mra	1591.1	vapor 35 4960	71.46	334.94	0.4126	1 0639	1 184	0.585	1 164	1120	126.8	2175.0	6 46	145.2	3.08	28.07	103.30
-100.00	0.00055	1582.4	25.1930	75.36	336.85	0.4120	1.9456	1.184	0.593	1.162	1103	120.0	1893.0	6.60	143.2	3.34	27.50	-103.50
-90	0.00152	1555.8	9.7698	87.23	342.76	0.5020	1.8972	1.189	0.617	1.156	1052	131.0	1339.0	7.03	137.3	4.15	25.79	-90
-80	0.00367	1529.0	4.2682	99.16	348.83	0.5654	1.8580	1.198	0.642	1.151	1002	134.0	1018.0	7.46	131.5	4.95	24.10	-80
-60	0.00796	1474.3	1.0790	123.36	355.02	0.6262	1.8204	1.210	0.667	1.146	903	139.4	663.1	8.30	120.0	6.56	20.80	-60
-50	0.02945	1446.3	0.60620	135.67	367.65	0.7410	1.7806	1.238	0.720	1.146	855	141.7	555.1	8.72	115.6	7.36	19.18	-50
-40	0.05121	1417.7	0.36108	148.14	374.00	0.7956	1.7643	1.255	0.749	1.148	807	143.6	472.2	9.12	110.6	8.17	17.60	-40
-30	0.08438	1388.4	0.22594	163.34	380.3Z 381.57	0.8480	1.7515	1.275	0.781	1.152	760	145.4	406.4	9.52	105.8	8.99 9.15	16.04	-30
-26.07 ^b	0.10133	1376.7	0.19018	165.81	382.78	0.8690	1.7472	1.281	0.794	1.154	742	145.7	384.2	9.68	103.9	9.31	15.44	-26.07
-26	0.10167	1376.5	0.18958	165.90	382.82	0.8694	1.7471	1.281	0.794	1.154	742	145.7	383.8	9.68	103.9	9.32	15.43	-26
-24	0.11130	1370.4	0.17407	168.47	384.07	0.8798	1.7451	1.285	0.801	1.155	732	145.9	373.1	9.77	102.9	9.48	15.12	-24
-20	0.12105	1358.3	0.14739	173.64	386.55	0.9002	1.7413	1.293	0.816	1.158	714	146.3	353.0	9.92	101.1	9.82	14.51	-20
-18	0.14460	1352.1	0.13592	176.23	387.79	0.9104	1.7396	1.297	0.823	1.159	705	146.4	343.5	10.01	100.1	9.98	14.21	-18
-16	0.15728	1345.9	0.12551	178.83	389.02	0.9205	1.7379	1.302	0.831	1.161	695	146.6	334.3	10.09	99.2	10.15	13.91	-16
-14	0.17082	1333.4	0.11003	181.44	390.24	0.9306	1.7348	1.300	0.856	1.165	677	140.7	316.9	10.17	98.5	10.52	13.01	-14
-10	0.20060	1327.1	0.09959	186.70	392.66	0.9506	1.7334	1.316	0.854	1.167	668	146.9	308.6	10.33	96.5	10.66	13.02	-10
-8	0.21693	1320.8	0.09242	189.34	393.87	0.9606	1.7320	1.320	0.863	1.169	658	146.9	300.6	10.41	95.6	10.83	12.72	-8
-6	0.23428	1314.3	0.08587	191.99	395.06	0.9705	1.7307	1.325	0.871	1.171	649	147.0	292.9	10.49	94.7	11.00	12.43	-6
-4	0.25208	1307.9	0.07987	194.65	396.23	0.9804	1.7294	1.336	0.888	1.174	640	147.0	285.4	10.57	93.8	11.34	11.85	-4
0	0.29280	1294.8	0.06931	200.00	398.60	1.0000	1.7271	1.341	0.897	1.179	622	146.9	271.1	10.73	92.0	11.51	11.56	0
2	0.31462	1288.1	0.06466	202.69	399.77	1.0098	1.7260	1.347	0.906	1.182	612	146.9	264.3	10.81	91.1	11.69	11.27	2
4	0.33766	1281.4	0.06039	205.40	400.92	1.0195	1.7250	1.352	0.916	1.185	603	146.8	257.6	10.90	90.2	11.86	10.99	4
8	0.30196	1274.7	0.05044	208.11	402.06	1.0292	1.7240	1.358	0.925	1.185	585	146.5	251.2	11.06	89.4	12.04	10.70	8
10	0.41461	1261.0	0.04944	213.58	404.32	1.0485	1.7221	1.370	0.945	1.196	576	146.4	238.8	11.15	87.6	12.40	10.14	10
12	0.44301	1254.0	0.04633	216.33	405.43	1.0581	1.7212	1.377	0.956	1.200	566	146.2	232.9	11.23	86.7	12.58	9.86	12
14	0.47288	1246.9	0.04345	219.09	406.53	1.0677	1.7204	1.383	0.967	1.204	557	146.0	227.1	11.32	85.9	12.77	9.58	14
18	0.53718	1239.6	0.04078	221.87	407.61	1.0867	1.7188	1.397	0.989	1.205	539	145.5	216.0	11.40	84.1	13.14	9.03	18
20	0.57171	1225.3	0.03600	227.47	409.75	1.0962	1.7180	1.405	1.001	1.219	530	145.1	210.7	11.58	83.3	13.33	8.76	20
22	0.60789	1218.0	0.03385	230.29	410.79	1.1057	1.7173	1.413	1.013	1.224	520	144.8	205.5	11.67	82.4	13.53	8.48	22
24	0.64578	1210.5	0.03186	233.12	411.82	1.1152	1.7166	1.421	1.025	1.230	511	144.5	200.4	11.76	81.6	13.72	8.21	24
28	0.72688	1195.2	0.02826	238.84	412.84	1.1341	1.7152	1.437	1.058	1.243	493	143.6	190.5	11.95	79.8	14.13	7.68	28
30	0.77020	1187.5	0.02664	241.72	414.82	1.1435	1.7145	1.446	1.065	1.249	483	143.2	185.8	12.04	79.0	14.33	7.42	30
32	0.81543	1179.6	0.02513	244.62	415.78	1.1529	1.7138	1.456	1.080	1.257	474	142.7	181.1	12.14	78.1	14.54	7.15	32
34	0.86263	1171.6	0.02371	247.54	416.72	1.1623	1.7131	1.466	1.095	1.265	465	142.1	176.6	12.24	77.3	14.76	6.89	34
38	0.96315	1155.1	0.02113	253.43	418.55	1.1811	1.7118	1.487	1.127	1.282	446	141.0	167.7	12.44	75.6	15.21	6.38	38
40	1.0166	1146.7	0.01997	256.41	419.43	1.1905	1.7111	1.498	1.145	1.292	436	140.3	163.4	12.55	74.7	15.44	6.13	40
42	1.0722	1138.2	0.01887	259.41	420.28	1.1999	1.7103	1.510	1.163	1.303	427	139.7	159.2	12.65	73.9	15.68	5.88	42
44	1.1301	1129.5	0.01784	262.43	421.11	1.2092	1.7096	1.525	1.182	1.314	418	138.9	155.1	12.76	73.0	15.93	5.03	44
48	1.2529	11111.5	0.01595	268.53	422.69	1.2280	1.7081	1.551	1.223	1.339	399	137.4	147.0	13.00	71.3	16.45	5.13	48
50	1.3179	1102.3	0.01509	271.62	423.44	1.2375	1.7072	1.566	1.246	1.354	389	136.6	143.1	13.12	70.4	16.72	4.89	50
52	1.3854	1092.9	0.01428	274.74	424.15	1.2469	1.7064	1.582	1.270	1.369	379	135.7	139.2	13.24	69.6	17.01	4.65	52
54	1.4555	1083.2	0.01351	277.89	424.83	1.2563	1.7055	1.600	1.296	1.386	370	134.7	135.4	13.37	68.7	17.51	4.41	54
58	1.6036	1063.2	0.01209	284.27	426.07	1.2753	1.7035	1.638	1.354	1.425	350	132.7	127.9	13.65	67.0	17.96	3.95	58
60	1.6818	1052.9	0.01144	287.50	426.63	1.2848	1.7024	1.660	1.387	1.448	340	131.7	124.2	13.79	66.1	18.31	3.72	60
62	1.7628	1042.2	0.01083	290.78	427.14	1.2944	1.7013	1.684	1.422	1.473	331	130.5	120.6	13.95	65.2	18.68	3.49	62
64	1.8407	1031.2	0.01024	294.09	427.61	1.3040	1.6987	1.738	1.401	1.501	321	129.4	113.5	14.11	63.4	19.07	3.05	64
68	2.0237	1008.3	0.00916	300.84	428.36	1.3234	1.6972	1.769	1.552	1.567	301	126.8	109.9	14.46	62.6	19.95	2.83	68
70	2.1168	996.2	0.00865	304.28	428.65	1.3332	1.6956	1.804	1.605	1.607	290	125.5	106.4	14.65	61.7	20.45	2.61	70
72	2.2132	983.8	0.00817	307.78	428.86	1.3430	1.6939	1.843	1.665	1.653	280	124.0	102.9	14.85	60.8	20.98	2.40	72
74	2.3130	970.8	0.00771	311.33	429.00	1.3530	1.6920	1.887	1.7.54	1.705	269	122.6	99.5	15.07	59.9	21.56	2.20	74
78	2.5228	943.1	0.00685	318.63	428.98	1.3733	1.6876	1.996	1.904	1.838	248	119.4	92.5	15.56	58.1	22.92	1.80	78
80	2.6332	928.2	0.00645	322.39	428.81	1.3836	1.6850	2.065	2.012	1.924	237	117.7	89.0	15.84	57.2	23.72	1.60	80
85	2.9258	887.2	0.00550	332.22	427.76	1.4104	1.6771	2.306	2.397	2.232	207	113.1	80.2	16.67	54.9	26.22	1.14	85
90	3.2442	837.8	0.00461	342.93	425.42	1.4390	1.6662	2.756	3.121	2.820	176	107.9	70.9	17.81	52.8	29.91	0.71	90
100	3.9724	651.2	0.00268	373.30	407.68	1.5188	1.6109	17.59	25.35	20.81	101	94.0	45.1	24.21	59.9	60.58	0.04	100
101.06°	4.0593	511.9	0.00195	389.64	389.64	1.5621	1.5621	a0	00	×	0	0.0	-	-	æ	100	0.00	101.06
*Tempera	atures on	ITS-90 sc	cale				^a Triple	point				^b Normal	boiling p	oint			°Crit	ical point

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-17

L 0.01 600 - 20. 0.1 0.08 0.06 0.04 0.02 10. 8. 1. 0.8 0.6 0.4 0.2 N 4 1.0 0.60 0.40 2.0 4.0 3.0 1.5 10 6.0 12 20 30 £081⊥ 4 40 80-80-09 550 550 Ŧ X 021 04.2 300 kg/m³ 50 200 J-081 =1 14. 04) 17 05:2 ĩ 120 140 500 400 500 130 4 150 +011 500 001 550 450 450 + 08 -- 02 510 - 09 . 1 - 09 11 07 ï 400 - 02 400 5.00 50-POL -0 06. 10+ ENTHALPY, kJ/kg -30 + 350 350 08.11 60 20 PA D 4 = 02 1 -6.0 20 01 300 09.1 -300 0 8.0 000 - 09 10 - 09'1 -30°C 20 0501 09 05.1 0011 07 250 250 9.0 50 1.30 30 S 0511 50 2 50 8--1.20 01 \$'0= 1500 01.1 -200 200 0 803 1520 01-00.1--50 20 06'0 = -30 150 150 iference state: h = 200.0 kJ/kg, s = 1.00 kJ/(kg·K) for saturated liquid at 0°C 10 08.0 R-404A [R-125/143a/134a (44/52/4)] 09 =0981== 02.0 -- 09-09.0 100 100 08-20 50 10 8 6 4 2 50 1 0.8 0.6 0.2 0.1 0.08 0.06 0.02 0.4 0.04 0.01 PRESSURE, MPa

ANEXO C

Fuente: ASHRAE Handbook - Fundamentals. Capitulo 30. p-26

|--|

	R	efriger	ant 40	4A [R-	125/14	3a/134	a (44/5	2/4)] P	ropert	ies of I	jquid	on Bul	bble Li	ine and	Vapor	on De	w Lin	e	
Pres-	Tempe	rature,* C	Density,	Volume,	Enth:	alpy, kg	Entr kJ/(k	opy, g·K)	Specifi c., kJ/	c Heat (kg·K)	c la	Veloc	ty of d. m/s	Visco	osity, a-s	Therma mW/(l Cond. m·K)	Surface	Pres-
sure, MPa	Bubble	Dew	kg/m ³ Liquid	m ⁵ /kg Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Tension, mN/m	sure, MPa
0.005	-93.70	-92.50	1447.1	3.05794	81.16	311.61	0.4716	1.7532	1.220	0.640	1.163	998	132.9	764.9	7.32	122.5	6.15	17.78	0.005
0.006	-91.48	-90.32	1440.6	2.57690	83.85	312.92	0.4865	1.7450	1.218	0.646	1.162	980	133.6	727.8	7.41	121.2	6.28	17.58	0.006
0.007	-87.86	-86.74	1429.9	1.96748	88.26	315.07	0.5106	1.7324	1.215	0.655	1.161	953	134.6	673.0	7.55	119.2	6.50	17.24	0.008
0.009	-86.32	-85.22	1425.4	1.76182	90.13	315.99	0.5206	1.7273	1.214	0.660	1.160	942	135.0	651.7	7.61	118.3	6.60	17.09	0.009
0.01	-84.93	-85.84	1392.4	0.83425	91.85	322.78	0.5296	1.6953	1.214	0.663	1.160	933 870	135.4	523.7	8.04	117.5	7.31	16.00	0.01
0.04	-63.85	-62.97	1359.4	0.43619	117.48	329.58	0.6587	1.6707	1.225	0.725	1.159	807	140.4	431.3	8.47	106.4	8.05	14.85	0.04
0.06	-56.57	-55.75	1337.7	0.29837	126.44	334.00	0.7007	1.6578	1.234	0.749	1.161	770	141.7	383.8	8.74	102.8	8.55	14.08	0.06
0.1	-46.50	-45.74	1307.1	0.18467	138.97	340.08	0.7571	1.6434	1.251	0.784	1.166	719	143.2	329.8	9.12	98.0	9.25	12.98	0.1
0.10132	h-46.22	-45.47	1306.3	0.18240	139.31	340.25	0.7586	1.6430	1.252	0.785	1.166	718	143.2	328.5	9.13	97.8	9.27	12.95	0.10132
0.12	-42.63	-38.53	1295.1	0.133443	143.83	344.41	0.7783	1.6349	1.259	0.811	1.109	684	143.9	297.3	9.26	96.2	9.55	12.55	0.12
0.16	-36.20	-35.51	1275.0	0.11846	151.97	346.20	0.8130	1.6318	1.273	0.823	1.174	669	144.1	285.0	9.50	93.2	10.01	11.82	0.16
0.18	-33.45	-32.78	1266.2	0.10592	155.49	347.81	0.8277	1.6292	1.279	0.834	1.177	656	144.2	274.4	9.60	91.9	10.21	11.51	0.18
0.22	-28.59	-27.94	1250.4	0.09531	161.75	350.63	0.8534	1.6250	1.291	0.855	1.182	633	144.3	256.9	9.78	89.7	10.40	10.94	0.22
0.24	-26.42	-25.78	1243.3	0.08049	164.57	351.88	0.8649	1.6233	1.297	0.864	1.185	623	144.4	249.5	9.86	88.7	10.75	10.69	0.24
0.26	-24.37	-23.75	1236.5	0.07454	167.23	353.04	0.8755	1.6217	1.303	0.873	1.188	613	144.3	242.8	9,94	87.8 87.0	10.91	10.45	0.26
0.3	-20.62	-20.02	1223.9	0.06494	172.14	355.15	0.8950	1.6190	1.313	0.891	1.193	595	144.2	231.1	10.08	86.2	11.21	10.01	0.3
0.32	-18.89	-18.29	1218.0	0.06101	174.43	356.12	0.9039	1.6179	1.319	0.899	1.196	587	144.1	225.9	10.15	85.4	11.34	9.81	0.32
0.34	-17.24	-15.08	1212.4	0.05752	178.71	357.03	0.9125	1.6158	1.324	0.907	1.202	579	144.0	216.6	10.21	84.0	11.48	9.61	0.34
0.38	-14.15	-13.57	1201.6	0.05162	180.73	358.72	0.9283	1.6149	1.334	0.923	1.205	565	143.8	212.4	10.33	83.3	11.73	9.24	0.38
0.4	-12.69	-12.12	1196.5	0.04909	182.68	359.51	0.9358	1.6141	1.339	0.931	1.208	558	143.7	208.4	10.39	82.7	11.85	9.07	0.4
0.42	-9.94	-9.39	1186.7	0.04471	186.38	360.98	0.9429	1.6125	1.349	0.946	1.214	545	143.4	201.2	10.49	81.5	12.08	8.74	0.42
0.46	-8.64	-8.09	1182.0	0.04279	188.15	361.67	0.9564	1.6118	1.353	0.953	1.217	538	143.2	197.8	10.55	81.0	12.19	8.58	0.46
0.48	-7.37	-0.83	1177.5	0.04103	189.86	362.33	0.9628	1.6112	1.358	0.960	1.220	532	143.0	194.6	10.60	80.4 79.9	12.30	8.43	0.48
0.55	-3.24	-2.72	1162.3	0.03584	195.51	364.45	0.9837	1.6091	1.374	0.984	1.231	513	142.4	184.6	10.77	78.7	12.66	7.93	0.55
0.6	-0.53	-0.02	1152.0	0.03284	199.26	365.81	0,9973	1,6078	1.386	1.001	1.239	500	141.9	178.2	10.88	77.5	12.91	7.61	0.6
0.05	4.42	4.91	1132.9	0.03029	202.81	368.21	1.0222	1.6055	1.409	1.018	1.247	476	140.8	167.2	11.10	75.5	13.41	7.01	0.05
0.75	6.70	7.18	1123.8	0.02618	209.41	369.28	1.0336	1.6044	1.420	1.051	1.264	465	140.2	162.4	11.20	74.5	13.65	6.74	0.75
0.8	8.87	9.34	1115.1	0.02449	212.49	370.27	1.0444	1.6035	1.432	1.067	1.274	455	139.6	157.9	11.30	73.6	13.89	6.48	0.8
0.9	12.92	13.37	1098.2	0.02166	218.32	372.05	1.0646	1.6016	1.455	1.100	1.293	435	138.3	149.7	11.50	72.0	14.35	5.99	0.9
0.95	14.81	15.26	1090.2	0.02046	221.09	372.85	1.0741	1.6007	1.466	1.117	1.303	426	137.7	146.0	11.59	71.2	14.59	5.76	0.95
1.0	20.09	20.52	1082.2	0.01937	228.89	374.94	1.1005	1.5999	1.503	1.154	1.315	417	137.1	142.5	11.88	69.0	14.82	5.13	1.0
1.2	23.32	23.73	1052.0	0.01590	233.75	376.12	1.1166	1.5965	1.528	1.206	1.360	384	134.4	130.2	12.07	67.7	15.76	4.75	1.2
1.3	26.35	26.75	1037.5	0.01455	238.37	377.14	1.1318	1.5949	1.554	1.244	1.386	368	133.0	124.9	12.26	66.5	16.23	4.39	1.3
1.5	31.93	32.30	1009.5	0.01236	247.07	378.78	1.1599	1.5914	1.611	1.329	1.445	340	130.1	115.3	12.65	64.2	17.21	3.75	1.5
1.6	34.51	34.87	995.7	0.01146	251.19	379.42	1.1730	1.5896	1.643	1.376	1.478	327	128.7	111.0	12.84	63.1	17.72	3.45	1.6
1.7	39.33	39.67	968.6	0.00994	259.05	380.38	1.1030	1.5858	1.712	1.420	1.515	301	127.2	107.0	13.05	61.2	18.80	2.91	1.7
1.9	41.58	41.91	955.1	0.00930	262.83	380.70	1.2095	1.5838	1.751	1.541	1.601	289	124.1	99.5	13.47	60.2	19.37	2.66	1.9
2.0	43.75	44.07	941.6	0.00871	266.52	380.92	1.2208	1.5817	1.794	1.607	1.652	277	122.6	96.1	13.70	59.3	19.98	2.43	2.0
2.2	47.85	48.15	914.4	0.00768	273.70	381.08	1.2427	1.5770	1.893	1.763	1.774	254	119.4	89.5	14.18	57.6	21.31	2.00	2.2
2.3	49.80	50.08	900.6	0.00723	277.20	381.01	1.2532	1.5745	1.952	1.856	1.847	243	117.8	86.5	14.44	56.8	22.04	1.80	2.3
2.4	51.68	51.95	886.5 872.2	0.00680	280.66	380.83	1.2635	1.5718	2.019	2.085	2.032	232	116.2	83.5	14.72	56.0	22.83	1.61	2.4
2.6	55.26	55.51	857.5	0.00604	287.50	380.15	1.2837	1.5658	2.183	2.229	2.149	211	112.9	77.7	15.34	54.5	24.62	1.26	2.6
2.7	56.97	57.21	842.4	0.00569	290.89	379.62	1.2937	1.5624	2.288	2.401	2.289	200	111.2	74.9	15.69	53.8	25.65	1.10	2.7
2.8	60.24	60.46	810.5	0.00536	294.29	378.96	1.3135	1.5567	2.569	2.868	2.672	179	107.7	69.3	16.49	52.6	28.06	0.80	2.9
3.0	61.81	62.01	793.4	0.00475	301.15	377.15	1.3234	1.5503	2.765	3.197	2.944	169	106.0	66.5	16.95	52.0	29.51	0.67	3.0
3.2	64.82 67.67	64.99 67.81	755.6	0.00417	308.25	374.49	1.3438	1.5397	3.381	4.233	3.797	148	98.5	60.9 54.7	18.09	51.2	33.17	0.43	3.2
3.729°	72.05	72.05	486.5	0.00206	343.92	343.92	1.4455	1.4455	_	_	_	_	_	_	_	_	_	0.00	3.729
*Tempera	itures on 1	ITS-90 sc	ale					^b Bubble	and dev	points a	at one sta	ndard atr	nosphere					^e Criti	cal point

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-27

ANEXO E

Fuente: ASHRAE Handbook - Fundamentals. Capitulo 30. p-30

ANEAU F

		Ref	rigera	nt 410/	A [R-32	2/125 (5	50/50)]	Proper	ties of	Liquid	l on Bu	ıbble L	ine an	d Vapo	or on l	Dew Lii	ne		
Pres-	Temper	rature,*	Density,	Volume,	Enth	alpy,	Entr	opy,	Specifi	c Heat		Veloc	ity of	Visco	osity,	Thermal	Cond.	Surface	Pres-
sure, MPa	Bubble	Dew	kg/m ³ Liquid	m ³ /kg Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	c _p /c _v Vapor	Liquid	Vapor	Liquid	a-s Vapor	Liquid	Wapor	Tension, mN/m	sure, MPa
0.01	-88.23	-88.14	1460.6	2.09888	76.56	378.76	0.4588	2.0927	1.344	0.668	1.227	1004	159.7	669.9	8.29	177.3	7.44	24.72	0.01
0.02	-78.79	-78.70	1432.9	1.09659	89.26	384.25	0.5258	2.0432	1.345	0.696	1.228	958	162.8	552.9	8.71	170.8	7.79	22.91	0.02
0.04	-68.12	-68.04	1401.1	0.57309	103.64	390.29 394.10	0.5978	1.9956	1.351	0.734	1.231	906 872	165.8	454.8	9.17	163.3	8.21	20.90	0.04
0.08	-55.98	-55.90	1363.9	0.29918	120.14	396.92	0.6758	1.9500	1.364	0.785	1.239	847	168.7	371.8	9.70	154.6	8.73	18.66	0.08
0,1	-51.70	-51.62	1350.5	0.24256	125.99	399.17	0.7024	1.9358	1.369	0.805	1.243	826	169.5	347.8	9.88	151.5	8.93	17.88	0.1
0.10132 ^e 0.12	-51.44	-51.36	1349.7	0.23957	126.34	399.31	0.7040	1.9350	1.370	0.807	1.244	824 808	169.5	346.4	9,90 10.04	151.3	8.94	17.84	0.10132
0.14	-44.87	-44.79	1328.8	0.17661	135.39	402.67	0.7441	1.9147	1.380	0.839	1.251	792	170.6	313.8	10.18	146.6	9.26	16.65	0.14
0.16	-42.02	-41.94	1319.6	0.15565	139.34	404.09	0.7612	1.9065	1.385	0.854	1.255	778	170.9	300.9	10.30	144.6	9.40	16.15	0.16
0.18	-39.44	-39.36	1311.2	0.13921	142.93	405.36	0.7766	1.8993	1.390	0.868	1.259	765	171.2	289.9	10.41	142.8	9.53	15.69	0.18
0.22	-34.89	-34.80	1296.2	0.11503	149.29	407.53	0.8034	1.8871	1.399	0.893	1.266	743	171.6	271.8	10.61	139.5	9.77	14.89	0.22
0.24	-32.85	-32.76	1289.4	0.10587	152.15	408.49	0.8153	1.8818	1.404	0.904	1.270	732	171.8	264.2	10.70	138.1	9.88	14.54	0.24
0.26	-30.94	-30.85	1283.0	0.09807	154.84	409.36	0.8264	1.8770	1.408	0.916	1.274	723	171.9	257.2	10.78	136.7	9.98	14.21	0.26
0.3	-27.44	-27.35	1271.1	0.08550	159.80	410.94	0.8466	1.8685	1.417	0.936	1.281	705	172.0	245.2	10.93	134.3	10.18	13.60	0.30
0.32	-25.82	-25.73	1265.5	0.08035	162.10	411.65	0.8558	1.8647	1.421	0.946	1.285	697	172.0	239.8	11.00	133.10	10.27	13.33	0.32
0.34	-24.28	-24.19	1260.2	0.07579	164.29	412.32	0.8646	1.8611	1.426	0.956	1.288	689	172.1	234.9	11.07	132.10	10.36	13.06	0.34
0.38	-21.40	-21.31	1250.1	0.06806	168.43	413.54	0.8810	1.8545	1.434	0.975	1.292	675	172.0	226.0	11.19	130.10	10.55	12.57	0.38
0.4	-20.04	-19.95	1245.3	0.06476	170.38	414.10	0.8887	1.8514	1.438	0.983	1.299	668	172.0	221.9	11.25	129.10	10.64	12.35	0.40
0.42	-18.74	-18.65	1240.6	0.06176	172.26	414.64	0.8960	1.8486	1.443	0.992	1.303	661	172.0	218.1	11.31	128.20	10.73	12.13	0.42
0.46	-16.27	-16.18	1231.8	0.05652	175.84	415.63	0.9099	1.8432	1.451	1.009	1.310	649	171.8	214.5	11.42	126.50	10.91	11.71	0.44
0.48	-15.10	-15.00	1227.5	0.05421	177.55	416.09	0.9165	1.8407	1.455	1.017	1.313	643	171.8	207.8	11.47	125.70	10.99	11.52	0.48
0.5	-13.96	-13.86	1223.3	0.05209	179.21	416.53	0.9228	1.8383	1.459	1.025	1.317	637	171.7	204.7	11.52	124.90	11.08	11.33	0.50
0.55	-11.26	-11.16	1213.4	0.04743	185.17	417.54	0.95/9	1.8326	1.469	1.045	1.326	623	171.4	197.6	11.64	123.10	11.28	10.89	0.55
0.65	-6.38	-6.28	1194.9	0.04019	190.40	419.28	0.9649	1.8227	1.489	1.083	1.344	597	170.9	185.3	11.86	119.70	11.68	10.09	0.65
0.7	-4.15	-4.05	1186.3	0.03732	193.74	420.03	0.9772	1.8183	1.499	1.101	1.354	586	170.5	180.0	11.96	118.20	11.88	9.73	0.70
0.75	-2.04	-1.93	1178.1	0.03482	196.92	420.71	0.9888	1.8141	1.509	1.119	1.363	574	170.2	175.1	12.06	116.80	12.07	9.39	0.75
0.85	1.89	1.99	1162.4	0.03068	202.88	421.89	1.0103	1.8065	1.529	1.154	1.382	554	169.4	166.4	12.24	114.20	12.45	8.77	0.85
0.9	3.72	3.83	1154.9	0.02894	205.69	422.41	1.0204	1.8030	1.540	1.171	1.392	544	169.0	162.4	12.33	113.00	12.64	8.48	0.90
0.95	5.48	5.58	1147.6	0.02738	208.40	422.88	1.0300	1.7996	1.550	1.188	1.402	535	168.6	158.7	12.41	111.80	12.82	8.21	0.95
1.0	10.36	10.47	1140.5	0.02396	211.02	423.31	1.0592	1.7904	1.581	1.205	1.413	525	168.1	155.5	12.49	108.60	13.39	7.46	1.10
1.2	13.34	13.46	1113.7	0.02145	220.76	424.68	1.0730	1.7846	1.603	1.274	1.457	492	166.3	143.1	12.81	106.70	13.79	7.01	1.20
1.3	16.15	16.26	1101.0	0.01970	225.26	425.19	1.0883	1.7792	1.624	1.31	1.481	477	165.4	137.8	12.95	104.80	14.19	6.59	1.30
1.4	21.30	21.41	1088.8	0.01819	229.56	425.59	1.1027	1.7741	1.670	1.347	1.506	462	163.4	133.0	13.12	103.10	14.60	5.83	1.40
1.6	23.68	23.80	1065.2	0.01571	237.65	426.11	1.1296	1.7644	1.694	1.424	1.560	435	162.4	124.3	13.38	99.98	15.46	5.49	1.60
1.7	25.96	26.07	1053.8	0.01468	241.48	426.25	1.1421	1.7597	1.719	1.465	1.590	422	161.4	120.4	13.52	98.53	15.91	5.16	1.70
1.8	28.13	28.25	1042.6	0.01376	245.19	426.31	1.1542	1.7552	1.745	1.509	1.621	410	160.3	116.8	13.66	97.15	16.38	4.86	1.80
2.0	32.22	32.34	1020.7	0.01295	252.29	426.24	1.1769	1.7464	1.800	1.603	1.690	386	159.3	110.1	13.95	94.56	17.36	4.29	2.00
2.1	34.16	34.28	1009.9	0.0115	255.71	426.10	1.1878	1.7421	1.830	1.655	1.728	375	157.1	107.0	14.10	93.34	17.88	4.03	2.10
2.2	36.02	36.14	999.2	0.01088	259.05	425.90	1.1983	1.7379	1.861	1.709	1.769	364	156.0	104.0	14.25	92.17	18.42	3.78	2.20
2.5	39.56	39.68	978.0	0.01031	262.32	425.64	1.2085	1.7336	1.929	1.831	1.860	343	154.9	98.5	14.40	91.05	19.58	3.34	2.30
2.5	41.25	41.37	967.5	0.00929	268.67	424.95	1.2282	1.7251	1.967	1.898	1.911	332	152.6	95.9	14.71	88.91	20.21	3.10	2.50
2.6	42.89	43.00	957.0	0.00883	271.77	424.51	1.2377	1.7209	2.008	1.971	1.966	322	151.5	93.4	14.87	87.89	20.87	2.89	2.60
2.7	44.48	44.59	946.4 935.8	0.00841	274.82	424.02	1.2470	1.7166	2.052	2.050	2.026	313	150.3	91.0 88.6	15.03	86.91	21.56	2.69	2.70
2.9	47.53	47.64	925.2	0.00764	280.82	422.85	1.2651	1.7079	2.153	2.230	2.163	293	147.9	86.3	15.38	85.04	23.07	2.31	2.90
3.0	48.99	49.10	914.5	0.00729	283.78	422.18	1.2740	1.7035	2.211	2.333	2.243	284	146.7	84.1	15.57	84.14	23.89	2.14	3.00
3.2	51.81	51.91	892.6	0.00665	289.62	420.62	1.2913	1.6944	2.348	2.575	2.429	265	144.2	79.9	15.96	82.42	25.70	1.81	3.20
3.6	57.05	54.59	846.3	0.00555	301.26	416.60	1.3085	1.6747	2.522	3.276	2.003	229	139.0	71.7	16.87	79.29	30.17	1.22	3.40
3.8	59,50	59,59	821.0	0.00506	307.16	414.03	1.3425	1.6638	3,070	3.815	3.386	210	136.3	67.7	17.43	77.90	33.02	0.97	3.80
4.0	61.85	61.93	793.5	0.00460	313.24	410.97	1.3600	1.6517	3.541	4.596	3.987	192	133.4	63.7	18.08	76.68	36.48	0.74	4.00
4.2 4.903°	64.10 71.36	64.17	762.6	0.00417	319.65	407.24	1.3783	1.6380	4.306	5.826	4.929	173	130,4	59.4	18.87	75.77	40,86	0.53	4.20
*Tempera	tures on I	TS-90 sc	ale	3.00210	200.00	200.00		^b Bubble	and dew	points at	one stan	dard atmo	osphere					°Crit	ical point

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-31

ANEXO G

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-38

ANEXO	H

			Refri	gerant	744 (C	arbon I	Dioxide) Prope	rties of	Satur	ated Lic	quid ar	nd Satu	rated V	/apor			
	Pres-	Density,	Volume,	Enth	alpy,	Entr	opy,	Specific	Heat cp,		Veloc	ity of	Visco	osity,	Thermal	Cond.,	Surface	
Temp.,*	sure,	kg/m ³	m ³ /kg	Liquid	Vanar	kJ/(k	g·K)	kJ/(k	g·K)	cp/cv Varian	Sound	i, m/s	μP:	a·s Venor	mW/()	M·K)	Tension,	Temp.,*
56 568	MPa 0.51706	1178.5	vapor	SO 04	vapor 430.42	0.5213	2 1300	1.053	vapor	vapor	076	222.8	256.7	10.05	180.6	vapor	17.16	56.56
-50	0.68234	1154.6	0.05579	92.94	432.68	0.5794	2.1018	1.933	0.952	1.468	928	222.6	229.3	11.31	172.1	11.58	15.53	-50
-48	0.73949	1147.1	0.05162	96.90	433.29	0.5968	2.0909	1.978	0.967	1.477	914	223.5	221.6	11.42	169.5	11.76	15.04	-48
-46	0.80015	1139.6	0.04782	100.88	433.86	0.6142	2.0801	1.985	0.982	1.486	900	223.6	214.3	11.53	166.9	11.95	14.56	-46
-42	0.93252	1124.2	0.04118	108.88	434.88	0.6486	2.0589	2.002	1.015	1.507	871	223.6	200.3	11.75	161.8	12.34	13.60	-42
-40	1.00450	1116.4	0.03828	112.90	435.32	0.6656	2.0485	2.012	1.033	1.518	856	223.5	193.8	11.87	159.3	12.54	13.12	-40
-38	1.08050	1108.5	0.03562	116.95	435.72	0.6826	2.0382	2.022	1.052	1.530	842	223.4	187.4	11.98	156.8	12.75	12.65	-38
-34	1.24520	1092.4	0.03093	125.10	436.37	0.7163	2.0180	2.045	1.094	1.558	813	223.1	175.4	12.22	151.8	13.20	11.72	-34
-32	1.33420	1084.1	0.02886	129.20	436.62	0.7331	2.0079	2.059	1.116	1.573	798	222.8	169.7	12.34	149.3	13.43	11.26	-32
-30	1.42780	1075.7	0.02696	133.34	436.82	0.7498	1.9980	2.073	1.141	1.590	783	222.5	164.2	12.46	146.9	13.68	10.80	-30
-26	1.62930	1058.6	0.02356	141.69	437.04	0.7831	1.9781	2.105	1.194	1.627	753	221.8	153.8	12.72	141.9	14.20	9.90	-26
-24	1.73750	1049.8	0.02205	145.91	437.06	0.7997	1.9683	2.124	1.223	1.648	738	221.4	148.8	12.85	139.5	14.49	9.46	-24
-22	1.85090	1040.8	0.02065	150.16	437.01	0.8163	1.9584	2.144	1.255	1.671	723	220.9	144.0	12.98	137.1	14.78	9.02	-22
-19	2.03100	1027.0	0.01934	156.61	436.81	0.8411	1.9435	2.105	1.307	1.709	700	220.4	137.1	13.12	133.4	15.25	8.37	-19
-18	2.09380	1022.3	0.01813	158.77	436.70	0.8494	1.9386	2.189	1.326	1.723	692	219.8	134.8	13.26	132.2	15.42	8.16	-18
-17	2.15810	1017.6	0.01756	160.95	436.58	0.8576	1.9337	2.201	1.346	1.738	684	219.5	132.6	13.33	131.0	15.59	7.95	-17
-15	2.22370	1008.0	0.01647	165.34	436.27	0.8742	1.9237	2.215	1.388	1.768	668	219.2	128.3	13.40	129.6	15.95	7.53	-15
-14	2.35930	1003.1	0.01595	167.55	436.09	0.8825	1.9187	2.243	1.410	1.785	660	218.5	126.2	13.55	127.4	16.14	7.32	-14
-13	2.42940	998.1	0.01545	169.78	435.89	0.8908	1.9137	2.258	1.433	1.802	651	218.1	124.1	13.63	126.2	16.34	7.11	-13
-12	2.50100	995.1	0.01497	172.01	435.66	0.8991	1.9086	2.273	1.457	1.821	643	217.7	122.0	13.70	123.8	16.54	6.90	-12
-10	2.64870	982.9	0.01405	176.52	435.14	0.9157	1.8985	2.307	1.509	1.860	626	216.9	118.0	13.86	122.5	16.96	6.50	-10
-9	2.72490	977.7	0.01361	178.80	434.84	0.9240	1.8934	2.325	1.537	1.881	617	216.5	116.1	13.95	121.3	17.18	6.29	-9
-8	2.80270	972.5	0.01319	181.09	434.51	0.9324	1.8882	2.345	1.566	1.904	609	216.1	114.1	14.03	120.1	17.42	6.09	-8
-6	2.96320	961.7	0.01278	185.71	433.79	0.9491	1.8778	2.386	1.629	1.927	591	215.2	110.3	14.20	117.7	17.91	5.70	-6
-5	3.04590	956.2	0.01200	188.05	433.38	0.9576	1.8725	2.408	1.663	1.979	582	214.7	108.4	14.30	116.5	18.17	5.50	-5
-4	3.13030	950.6	0.01162	190.40	432.95	0.9660	1.8672	2.432	1.699	2.007	573	214.2	106.6	14.39	115.3	18.44	5.30	-4
-3	3.30420	945.0	0.01126	192.77	432.48	0.9744	1.8563	2.457	1.777	2.057	555	213.7	104.8	14.48	114.1	18.73	4.92	-3
-1	3.39380	933.4	0.01057	197.57	431.46	0.9914	1.8509	2.512	1.819	2.102	546	212.6	101.2	14.68	111.6	19.34	4.73	-1
0	3.48510	927.4	0.01024	200.00	430.89	1.0000	1.8453	2.542	1.865	2.138	536	212.0	99.4	14.79	110.4	19.67	4.54	0
2	3.57830	921.4	0,00992	202.45	430.29	1.0086	1,8397	2.574	1.913	2.176	527	211.5	97.6	14.89	109.2	20.02	4.35	2
3	3.77010	909.0	0.00931	204.93	428.97	1.0259	1.8282	2.645	2.020	2.262	508	210.3	94.2	15.12	106.8	20.38	3.99	3
4	3.86880	902.6	0.00901	209.95	428.25	1.0346	1.8223	2.685	2.080	2.309	499	209.6	92.5	15.24	105.5	21.17	3.80	4
5	3.96950	896.0	0.00872	212.50	427.48	1.0434	1.8163	2.727	2.144	2.360	489	209.0	90.8	15.36	104.3	21.60	3.62	5
7	4.07200	882.6	0.00843	217.69	425.81	1.0525	1.8041	2.822	2.215	2.416	480	208.5	87.5	15.62	105.1	22.54	3.45	7
8	4.28310	875.6	0.00791	220.34	424.89	1.0702	1.7977	2.875	2.370	2.541	460	206.9	85.8	15.76	100.6	23.06	3.10	8
9	4.39160	868.4	0.00765	223.01	423.92	1.0792	1.7913	2.934	2.460	2.612	451	206.2	84.2	15.91	99.4	23.61	2.93	9
10	4.50220	853.6	0.00740	225.73	422.88	1.0884	1.7847	2.998	2.558	2.690	441	205.4	82.6	16.06	98.1	24.21	2.76	10
12	4.72970	845.9	0.00691	231.29	420.62	1.1070	1.7710	3.145	2.786	2.871	421	203.8	79.3	16.39	95.6	25.53	2.42	12
13	4.84660	837.9	0.00668	234.13	419.37	1.1165	1.7638	3.232	2.919	2.977	411	203.0	77.7	16.56	94.4	26.27	2.26	13
14	4.96580	829.7	0.00645	237.03	418.05	1.1261	1.7565	3.328	3.068	3.095	401	202.1	76.1	16.75	93.1	27.08	2.10	14
16	5.21080	812.4	0,00600	243.01	415.12	1.1458	1.7411	3.558	3.429	3.378	381	200.3	72.8	17.16	90,6	28.93	1.79	16
17	5.33680	803.3	0.00578	246.10	413.50	1.1559	1.7329	3.698	3.649	3.550	370	199.3	71.2	17.39	89.4	29.99	1.64	17
18	5.46510	793.8	0.00557	249.26	411.76	1.1663	1.7244	3.858	3.905	3.748	360	198.3	69.5	17.64	88.1	31.16	1.49	18
20	5.72910	773.4	0.00515	252.52	407.87	1.1769	1,7062	4.044	4.204	4.252	338	197.2	66.1	18.19	85.7	33.94	1.35	20
21	5.86480	762.4	0.00494	259.33	405.67	1.1989	1.6964	4.526	4.990	4.578	326	194.9	64.4	18.50	84.5	35.61	1.06	21
22	6.00310	750.8	0.00474	262.93	403.26	1.2105	1.6860	4.846	5.519	4.976	314	193.6	62.7	18.85	83.4	37.52	0.93	22
23	6.14400	738.4	0.00453	266.68	400.63	1.2225	1.6749	5.248	6.185	5.472	302	192.3	60.9 59.0	19.23	82.4	39.74	0.80	23
25	6.43420	710.5	0.00412	274.78	394.43	1.2485	1.6498	6.467	8.212	6.949	274	189.1	57.0	20.16	80.8	45.51	0.55	25
26	6.58370	694.5	0.00391	279.26	390.71	1.2627	1.6353	7.460	9.862	8.121	259	187.2	55.0	20.73	80.5	49.44	0.44	26
27	6.73610	676.4	0.00369	284.14	386.39	1.2783	1.6189	8.970	12.38	9.870	243	185.0	52.8	21.42	80.7	54.56	0.33	27
28	7.05090	629.4	0.00346	289.62	374.61	1.2958	1.5763	16,950	25,74	12.780	205	178.2	47.5	23,41	81.9	73.19	0.23	28
30	7.21370	593.3	0.00290	304.55	365.13	1.3435	1.5433	35.340	55.82	36.660	177	171.3	43.8	25.17	95.4	98.02	0.05	30
30.98°	7.37730	467.6	0.00214	332.25	332.25	1.4336	1.4336	æ	00	æ	0	0.0	-	-	30	œ	0.00	30.98
*Tempera	tures on I	TS-90 sc	ale					^a Triple	point								*Crit	tical point

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-39

ANEXO I

			Refrige	erant 72	29 (Ai	r) Proj	perties	of Gas at	0.101 3	25 MP	a (one s	tandard	atmosp	ohere)			
Temp., °C	Density, kg/m ³	Enthalpy kJ/kg	Entropy, kJ/(kg·K)	c _p , kJ/ (kg∙K)	c_p/c_r	Vel. of Sound, m/s	Vise., µPa·s	Thermal Cond., mW/(m·K)	Temp., °C	Density, kg/m ³	Enthalpy kJ/kg	, Entropy, kJ/(kg·K)	c _p , kJ/ (kg∙K)	c_p/c_v	Vel. of Sound, m/s	Visc., µPa∙s	Thermal Cond., mW/(m·K)
-191.4 ^d	4.4889	79.05	5.5424	1.071	1.452	177.4	5.87	7.72	150	0.8338	424.81	7.2142	1.017	1.394	411.7	24.11	34.75
-180	3.8887	91.09	5.6804	1.044	1.435	190.8	6.68	8.84	160	0.8145	434.99	7.2379	1.019	1.394	416.4	24.52	35.39
-160	3.1648	111.75	5.8814	1.025	1.421	211.7	8.04	10.76	170	0.7961	445.18	7.2612	1.020	1.393	421.1	24.93	36.04
-140	2.6744	132.15	6.0474	1.016	1.414	230.4	9.35	12.63	180	0.7785	455.39	7.2840	1.022	1.392	425.7	25.34	36.67
-120	2.3178	152.43	6.1893	1.012	1.410	247.6	10.61	14.45	190	0.7617	465.62	7.3063	1.023	1.391	430.2	25.74	37.31
-100	2.0462	172.63	6.3133	1.009	1.408	263.5	11.82	16.20	200	0.7456	475.86	7.3282	1.025	1.390	434.7	26.13	37.93
-90	1.9332	182.71	6.3699	1.008	1.407	271.1	12.41	17.06	210	0.7302	486.12	7.3497	1.027	1.389	439.1	26.53	38.56
-80	1.8321	192.79	6.4235	1.007	1.406	278.5	12.99	17.91	220	0.7154	496.40	7.3707	1.029	1.388	443.5	26.92	39.17
-70	1.7411	202.86	6.4743	1.007	1.406	285.7	13.55	18.74	230	0.7011	506.70	7.3914	1.031	1.387	447.8	27.30	39.79
-60	1.6588	212.93	6.5227	1.007	1.405	292.7	14.11	19.56	240	0.6875	517.02	7.4117	1.033	1.386	452.0	27.69	40.40
-50	1.5840	222.99	6.5688	1.006	1.405	299.5	14.66	20.37	250	0.6743	527.35	7.4317	1.035	1.385	456.2	28.06	41.00
-40	1.5156	233.06	6.6130	1.006	1.404	306.2	15.20	21.17	260	0.6617	537.71	7.4513	1.037	1.384	460.4	28.44	41.60
-30	1.4530	243.11	6.6552	1.006	1.404	312.7	15.73	21.96	270	0.6495	548.09	7.4705	1.039	1.383	464.5	28.81	42.20
-20	1.3953	253.17	6.6957	1.006	1.404	319.1	16.25	22.74	280	0.6378	558.49	7.4895	1.041	1.381	468.6	29.18	42.80
-10	1.3421	263.23	6.7347	1.006	1.403	325.4	16.76	23.51	290	0.6264	568.91	7.5082	1.043	1.380	472.6	29.55	43.39
0	1.2927	273.29	6.7722	1.006	1.403	331.5	17.27	24.27	300	0.6155	579.35	7.5266	1.045	1.379	476.6	29.91	43.97
10	1.2469	283.35	6.8084	1.006	1.402	337.5	17.77	25.02	310	0.6049	589.82	7.5447	1.048	1.378	480.5	30.27	44.56
20	1.2043	293.41	6.8433	1.006	1.402	343.4	18.26	25.77	320	0.5947	600.30	7.5625	1.050	1.377	484.4	30.63	45.14
30	1.1644	303.48	6.8771	1.007	1.402	349.2	18.75	26.50	330	0.5849	610.81	7.5801	1.052	1.376	488.3	30.98	45.71
40	1.1272	313.55	6.9098	1.007	1.401	354.9	19.22	27.22	340	0.5753	621.35	7.5974	1.055	1.375	492.1	31.34	46.29
50	1.0922	323.62	6.9414	1.008	1.401	360.5	19.70	27.94	350	0.5661	631.90	7.6145	1.057	1.373	495.9	31.69	46.86
60	1.0594	333.70	6.9721	1.008	1.400	366.0	20.16	28.65	360	0.5572	642.48	7.6313	1.059	1.372	499.7	32.03	47.42
70	1.0284	343.79	7.0020	1.009	1.400	371.4	20.62	29.36	370	0.5485	653.09	7.6479	1.062	1.371	503.4	32.38	47.99
80	0.9993	353.88	7.0310	1.010	1.399	376.7	21.08	30.05	380	0.5401	663.71	7.6643	1.064	1.370	507.1	32.72	48.55
90	0.9717	363.98	7.0592	1.011	1.399	381.9	21.52	30.74	390	0.5320	674.37	7,6805	1.066	1.369	510.7	33.06	49.11
100	0.9456	374.09	7.0866	1.011	1.398	387.1	21.97	31.42	400	0.5241	685.04	7.6965	1.069	1.368	514.3	33.40	49.66
110	0.9209	384.21	7.1134	1.012	1.397	392.1	22.41	32.10	420	0.5089	706.47	7.7279	1.074	1.365	521.5	34.06	50,76
120	0.8975	394.34	7.1395	1.014	1.397	397.1	22.84	32.77	440	0.4947	727.98	7.7585	1.078	1.363	528.5	34.72	51.86
130	0.8752	404.49	7.1650	1.015	1.396	402.1	23.27	33.43	460	0.4812	749.60	7.7884	1.083	1.361	535.4	35.37	52.94
140	0.8540	414.64	7.1899	1.016	1.395	406.9	23.69	34.09	480	0.4684	771.31	7.8176	1.088	1.359	542.3	36.02	54.01
									500	0.4563	793.12	7.8461	1.093	1.357	549.0	36.65	55.08
dSaturate	i vapor at	dew-point	t temperatur	e													

Fuente: ASHRAE Handbook – Fundamentals. Capitulo 30. p-62

Composition Meltin Poin Poin Poin Aluminum 933 Alloy 2024-T6 775								LIO	erues at	A di Mus	endura ((w) com			
Composition Point Point Aluminum 933 Aluy 2024-T6 775			Properties	at 300 K					k (W)	$(\mathbf{m} \cdot \mathbf{K})/c_p$	(J/kg · K	-			
Aluminum 933 Pure 933 Alloy 2024-T6 775	(k,	p g/m ³)	$(\mathbf{J} \cdot \mathbf{k} \mathbf{g} \cdot \mathbf{K})$	k (W/m · K)	$\begin{array}{c} \alpha \cdot 10^{6} \\ (m^{2}/s) \end{array}$	100	200	400	009	800	1000	1200	1500	2000	2500
Alloy 2024-T6 775	6	2702	903	237	1.79	302	237	240	231	218					
(+.2.70 Cu, 1.3.70 Mg,	5	2770	875	177	73.0	482 65 473	787 787	949 186 925	1033 186 1042	1146					
0.0% Mn) Alloy 195, Cast (4.5% Cu)		2790	883	168	68.2			174 —	185						
Beryllium 1550	0	1850	1825	200	59.2	990 203	301	161 2191	126 2604	106 2823	90.8 3018	78.7 3227	3519		
Bismuth 545	5	9780	122	7.86	6.59	16.5	9.69 120	7.04							
Boron 2573	3	2500	1107	27.0	9.76	190	55.5 600	16.8 1463	10.6	9.60 2160	9.85 2338				
Cadmium 594	4	8650	231	96.8	48.4	203 198	99.3 222	94.7 242							
Chromium 2118	00	7160	449	93.7	29.1	159	111 384	90.9 484	80.7 542	71.3 581	65.4 616	61.9 682	57.2 779	49.4 937	
Cobalt 1765	6	8862	421	59.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	52.1 628	49.3 733	42.5 674		
Copper Pure 1358	00	8933	385	401	117	482	413	393	379	366	352	339			
Commercial bronze 1293 (90% Cu. 10% Al)	5	8800	420	52	14	707	42 785	52 460	545	CCt.	F	001			
Phosphor gear bronze 1104 (89% Cu, 11% Sn)	4	8780	355	54	17		41	65	74						
Cartridge brass 1188 (70% Cu. 30% Zn)	00	8530	380	110	33.9	75	95 360	137 395	149						
Constantan (55% Cu, 45% Ni)	3	8920	384	23	6.71	17 237	19 362								
Germanium 121	-	5360	322	59.9	34.7	232 190	96.8 290	43.2 337	27.3 348	19.8 357	17.4 375	17.4 395			

ANEXO J

TABLE A.1 Thermophysical Properties of Selected Metallic Solids^a

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

929

Fuente: Incropera, De Witt. Fundamentals of heat and mass transfer. Apendice A. Tabla A.1. p-929.

<u>ANEXO K</u>

CATALOGO BOCK: CO2 COMPRESSOR RKX26

PRODUCT INFORMATION RKX26 CO₂ T

CO₂ Compressor RKX26

Semi-hermetic radial piston compressor for transcritical CO2 applications up to 130 bar

Bock Kältemaschinen GmbH – 09.06.2009

PRODUCT INFORMAT

RKX26 CO₂ T

Important Information

- Transcritical CO2 applications are still in the development phase
- They require a completely new kind of system and control
- They are not a general solution for the substitution of F-gases
- Therefore, we would specifically draw your attention to the fact that this information is presented according to our current level of knowledge and may change at any time due to further development. Legal claims regarding the accuracy of the information cannot be made at any time and are thus expressly excluded
- Compressors can only be made available for selected projects
- Operation and warranties are subject to a separate agreement

At a Glance

Since the beginning of the 1990's, Bock, together with leading institutes and manufacturers, has developed compressors for transcritical CO2 systems.

In 1993 the first open CO2 compressor was created for bus air-conditioning, which was then presented to the public in a Konvekta air-conditioning system at the 1994 IAA commercial vehicles fair.

Since then, such compressors have been field-tested and form the basis of many CO2 studies by international institutes.

Semi-Hermetic radial piston compressor RKX

In 6-Cylinder Design

Bock has developed this new radial piston compressor with Obrist Engineering GmbH, who has also worked on the development of CO2 for a long time.

CO2 is a very high capacity refrigerant, so the compressor displacement needed is less than for HFC refrigerants. In addition, the RKX is a radial piston compressor, providing a very compact arrangament. It is an ideal compressor for small to medium capacities.

The compressor is a 6 cylinder machine and can be mounted vertically or horizontally. It can be used on a wide range of CO2 applications, including in single and two stage system.

(potential operating pressure up to 130 bar).

Generated by Foxit PDF Creator © Fox

RKX26 CO₂ T

PRODUCT INFORMATING/Www.foxitsoftware.com For evaluation

Special Features

- Simple total construction, aligned to the special requirements in the transcritical sector
- Only two surface seals on the entire compressor (housing cover, electrical terminal board)
- Pot-shaped, closed housing made of spheroidal cast iron for maximum pressure strength
- Complete power train integrated in the housing, no cylinder cover required
- Only a few small high-pressure compartments
- Valve operation according to the uniflow principle, the suction gas is pushed in one direction through the piston and is thus compressed. There are no alternating gas movements and a minimum amount of gas pulsation
- · Centrifugal lubrication with integrated oil separation
- Excellent operating characteristics radial arrangement of six cylinders on one level
- Well dimensioned drive motors, partially suction gas cooled, in 2 and 4 pole versions (1.500 and 3.000 ¹/min)
- Suction and discharge connections using screwed cutting ring joints for steel pipes (without shut-off valves)
- Safety valves for the suction and pressure area
- Electrical connection box to IP65 with Bock MP10 motor protection

Available models

Туре	Swept volume 50 Hz [m³/h]
RKX26/31-4 CO2 T	2,7
RKX26/31-2 CO2 T	5,4

Type Key

P	K	X,	26		21	_/.		Т
	I	Λ		·/ ~		- 4	\mathbf{U}_2	•
Series 1)								Т
Ester oil filling								
Size			-					
Number of cylinders								
Swept volume ——								
Number of poles —								
CO2 version								
Transcritical								

¹⁾ RK = Radial piston

RKX26 CO₂ T

Operating Limits RKX26/31-2 CO₂ T | RKX26/31-4 CO₂ T®

RKX26/31-4 CO2 T min. evaporating temperature t₀ = -5 °C (30,4 bar)

Max. allowed operating pressure (HD):130 barMax. allowed pressure during stand still periods: 90 barMax. allowed discharge end temperature:160 °C

Notes

Oil

The compressors are equipped with Bock C120E, a special oil filling, which is available directly from Bock. This is a synthetic ester oil with high thermal load resistance, allowing good mixing solubility with CO2. It possesses a special additive, which protects the compressors against wear, even when subjected to extreme loads, such as those which exist in CO2 systems. This oil can be used both in transcritical and subcritical systems.

Bock C120E oil is required for RKX applications

Generated by Foxit PDF Creator © Foxit Comparison of the second s

RKX26 CO₂ T

R

CO₂ Performance data

Туре			Cooling capacity	Ż _o [w]		Power consum	ption P _e [kW]					
			Evaporating temperature °C									
			15	10	5	0	-5					
	t °C		SUBCRITICAL									
	15	Q P				12900 1,85						
	20	Q P			13950 1,90	11550 2,25						
RKX26/31-4 CO ₂ T	25	Q P		14400 2,00	12050 2,35	9800 2,55						
	30	Q P		11300 2,45	9350 2,70	7600 2,85						
	t _{ga} ⁰C		TRANSCRITICA	۱L								
	30	P _{V2} Q P	75 14250 2,35	75 11950 2,65	75 9850 2,90	75 7950 2,95	75 6200 2,95					
	35	P _{V2} Q P	85 12500 2,90	85 10450 3,10	85 8600 3,20	90 7200 3,30	90 5550 3,15					
RKX26/31-4 CO2 T	40	P _{V2} Q P	100 11600 3,60	100 9600 3,65	100 7800 3,60	100 6150 3,50	105 4650 3,35					
	45	P _{V2} Q P	110 10050 4,00	110 8250 4,00	115 6750 4,05	115 5200 3,85	110 3800 3,45					
	50	p _{v2} Q P	125 9150 4,75	125 7500 4,65	130 6200 4,75	125 4550 4,30	110 2950 3,45					

Subcritical performance data 50 Hz

Relative to 10 K suction gas superheat without liquid subcooling

Transcritical performance data 50 Hz

Relative to 10 K suction gas superheat

The performance data are indicated at a high pressure level, which is close to a optimal high pressure level. Optimal high pressure is thereby related to an ideal cyclic process.

Optimal high pressure is outside of the operating limits. Performance data are indicated at maximal possible high pressure. t_c = Condensing temperature

 $\mathbf{t}_{ga} = Gas \text{ cooler outlet temperature}$ $\tilde{\mathbf{p}}_{v_2}$ = Pressure at the compressor

outlet [bar]

50 Hz

Generated by Foxit PDF Creator © Foxit Software PRODUCT INFORMAT http://www.foxitsoftware.com For evaluation only.

CO₂ Performance data

RKX26 CO₂ T

50 Hz

Туре			Cooling cap	bacity \dot{Q}_0 [V	Power co	Power consumption P_e [kW]						
		Evaporating temperature °C										
			15	10	5	0	-5	-10	-15	-20		
	t °Č		SUBCRITI	CAL								
	10	Q P					20350 4,45	16600 4,45	13300 4,35	10400 4,15		
	15	Q P				22450 4,85	18500 4,90	15000 4,85	11900 4,70	9150 4,50		
RKX26/31-2 CO2 T	20	Q P			24000 5,25	20000 5,35	16400 5,35	13200 5,25	10300 5,10	7800 4,80		
	25	Q P		24550 5,70	20650 5,80	17100 5,80	13950 5,75	11100 5,65	8550 5,45	6300 5,10		
	30	Q P		19850 6,25	16600 6,30	13650 6,30	11000 6,20	8650 6,05	6550 5,75	4650 5,40		
	t _{ga} °C		TRANSCR	ITICAL								
	30	P _{V2} Q P	75 24600 6,45	75 20900 6,55	75 17500 6,55	75 14400 6,50	75 11600 6,40	75 9050 6,20	75 6750 5,90	75 4750 5,55		
	35	P _{V2} Q P	85 22000 7,20	85 18600 7,20	85 15450 7,15	90 13300 7,30	90 10450 7,10	90 7900 6,80	85 5550 6,25			
RKX26/31-2 CO2 T	40	P _{V2} Q P	100 21100 8,30	100 17550 8,20	100 14400 8,00	100 11500 7,80	105 8900 7,65	95 6350 6,95				
	45	p _{V2} Q P	110 18450 9,00	110 15300 8,80	115 12750 8,80	115 10000 8,45	110 7450 7,85	95 4050 6,95				
	50	p _{v2} Q P	125 16900 10,00	125 13900 9,70	130 11650 9,55	125 8800 8,85	110 5700 7,85					

Subcritical performance data 50 Hz

Relative to 10 K suction gas superheat without liquid subcooling

Transcritical performance data 50 Hz

Relative to 10 K suction gas superheat

The performance data are indicated at a high pressure level, which is close to a optimal high pressure level. Optimal high pressure is thereby related to an ideal cyclic process.

Optimal high pressure is outside of the operating limits. Performance data are indicated at maximal possible high pressure. t_c = Condensing temperature

 \mathbf{t}_{ga} = Gas cooler outlet temperature

 \mathbf{p}_{v_2} = Pressure at the compressor outlet [bar] **PRODUCT INFORMATION** RKX26 C0₂ T

Technical data

Туре	Number	Swept		Electric	al data (3)		Weight	Connec	Oil	
	of cylinders	volume 50 / 60 Hz	Voltage	Max. working current	Max. power con-	Starting current (rotor locked)		Discharge line DV	Suction line SV	charge
			1 2	2	(iotor locked)					
		m³/h		А	kW	Α	kg	mm	mm	Ltr.
				Δ / Υ		Δ/Υ				
RKX26/31-4 CO2 T	6	2,70 / 3,30	4	14,3 / 8,2	5	107 / 62	68	Max. 12	Max. 12	1,0
RKX26/31-2 CO2 T	6	5,40 / 6,50	4	40 / 23	10,6	235 / 136	73	Max. 12	Max. 12	1,0

Oil sump heater 110-240 V - 1 - 50/60 Hz (standard)

> PTC heater, 50-120 W, self-regulating

Oil sump heater is necessary due to the high CO2 solubility in the oil.

Explanations:

- Tolerance (± 10%) relates to the mean value of the voltage range. Other voltages and current types on request.
- 2 Take account of the max. operating current / max. power consumption when designing contactors, leads and fuses. Switches: Service category AC3
- 3 All data are based on the mean value of the voltage range.
- (4) 220-240 V∆ / 380-420 VY 3 50 Hz 265-290 V∆ / 440-480 VY - 3 - 60 Hz
- 5 Cutting ring connection for steel pipes

RKX26 CO₂ T

Dimensions and connections

Connectio	ins	RKX CO2 T				
SV DV	Suction line Discharge line	Please refer to technical data				
A	Connection suction side, not lockable	¹ / ₈ " NPTF				
B	Connection discharge side, not lockable	¹ / ₈ " NPTF				
£	Oil drain	G 1/4 "				
н	Oil charge plug	G 1/4 "				
1	Oil sump heater	Ø 15 mm				
11	Thermal protection thermostat	1/8 " NPTF				
SI	Safety valve HD Safety valve ND	M 12 x 1 M 10 x 1				

Dimensions for anti-vibration pads

PRODUCT INFORMATING/Www.foxitsoftware.com For evaluat RKX26 CO₂ T

Scope of supply

- Semi-hermetic 6 cylinder radial piston compressor with drive motor for part winding start - 2- or 4 pole version 220-240 V∆ / 380-420 VY - 3 - 50 Hz 265-290 V A / 440-480 V Y - 3 - 60 Hz Single-section compressor housing
- Winding protection with PTC resistor sensors and electronic motor protection unit Bock MP10
- Thermal protection thermostat (PTC thermistor) IP67
- Oil sump heater 110-240 V 1 50/60 Hz, 50-120 W PTC heater self regulating
- Oil charge: Bock C120E 1)
- · Compressor safety valve high-pressure and low-pressure side
- Capability of connecting for suction line and discharge line without shut off valves Design in cutting ring version for steel pipes
- Inert gas charge
- 4 anti-vibration pads enclosed

¹⁾ Also available as refill unit in 1 or 5 liter packaging

ANEXO L

CATALOGO DANFOSS: CCM GAS BYPASS & EXPANSION

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Technical brochure Electrically operated valves for CO₂ CCM - Gas bypass & Expansion

www.danfoss.com/ir

Page

Technical brochure

Electrically operated valves for CO₂, type CCM

Contents

Introduction
Features
Technical data
Electrical data
Design
Valve operation
Sizing and capacities
Gas bypass application
Liquid expansion application
Ordering
Valve incl. actuator
Spare parts
Wire 4 x 0,5, 8000 mm with M12 female10
AST-G driver manual box for operating the valve10
Dimensions and weight
CCM

Electrically operated valves for CO₂, type CCM

Introduction

The CCM is an electrically operated valve designed specifically for operation in CO_2 systems. The valve is capable of functioning both as an expansion valve, and as a gas bypass valve with back-pressure regulation in subcritical applications.

The pressure rating allows for operation in environments where system standby capability is required without the need for auxiliary cooling systems during servicing or power outages.

Features

- Up to 90 bar (1305 psi) working pressure to accomodate CO₂ system pressures during standstill conditions.
- Precise positioning for optimal control of intermediate pressures in transcritical CO₂ systems or liquid injection in heat exchangers.
- Possibility of bi-flow operation
- MOPD up to 50 bar (725 psi)
- Combined stainless steel butt weld/solder connections for installation in copper piped systems (K65 alloy or standard) as well as steel piped systems.
- Standard M12 connector for simple and flexible connection to the motor driver.
- For manual operation and service of the CCM an AST-g service driver is available.
 For further information please contact Danfoss (Commercial Refrigeration and Air Conditioning Controls).

Parameter	ССМ
Compatibility	R744
MOPD	50 bar (725 psi)
Max. working pressure (PS/MWP)	90 bar (1305 psi)
Refrigerant temperature range	-40°C to 40°C (-40°F to 104°F)
Ambient temperature	−40°C to 60°C (−40°F to 140°F)
Total stroke	13 mm / 16 mm (0.5 in. / 0.6 in.)
Motor enclosure	IP 67

Electrically operated valves for CO₂, type CCM

Electrical data

Parameter	ССМ					
Stepper motor type	Bi-polar - permanent magnet					
Step mode	2 phase full step					
Phase resistance	$52\Omega\pm10\%$					
Phase inductance	85 mH					
Holding current	Depends on application. Full current allowed (100% duty cycle)					
Step angle	7.5° (motor), 0.9° (lead screw), Gearing ration 8.5:1. (38/13) ² :1					
Nominal voltage	(Constant voltage drive) 12 V dc -4% +15%, 150 steps/sec.					
Phase current	(Using chopper drive) 100 mA RMS -4% +15%,					
Max. total power	Voltage / current drive: 5.5 / 1.3 W (UL: NEC class 2)					
Step rate	150 steps/sec. (constant voltage drive) 0-300 steps/sec. 300 recommended (chopper current drive)					
Total steps	CCM 10, 20, 30 2625 [+160 / -0] steps CCM 40 3530 [+160 / -0] steps					
Full travel time	CCM 10, 20, 30 17 / 8.5 sec. (voltage / current) CCM 40 23 / 11.5 sec. (voltage / current)					
Lifting height	CCM 10, 20, 30 13 mm (0.5 in.) CCM 40 16 mm (0.6 in.)					
Reference position	Overdriving against the full close position					
Electrical connection	4 wire 0.5 mm² (0.02 in²), 0.3 m (1 ft) long cable					

Stepper motor switch sequence:

CCM				Connector
	4	Black	4	
	3	White	3	
2 0	2	Green	2	
J. J	1	Red	1	
	Connection 1	Wire Color	Connection 2	
		Pin Out		

Stepper motor switch sequence:

	CTED	Co	эiП	Co		
↑ CLOSING ↑	STEP	Red	Green	White	Black	
	1	+	-	+	-	↓ OPENING ↓
	2	+	-	-	+	
	3	-	+	-	+	
	4	-	+	+	-	
	1	+	-	+	-	

ССМ

Electrically operated valves for CO₂, type CCM

Valve operation

The CCM can be used in a variety of applications within CO₂ refrigeration systems. Typically it is

used as a gas bypass valve in a transcritical CO₂ booster system or as an expansion valve.

Application 1

A gas bypass valve is typically used to regulate the intermediate pressure in a transcritical CO_2 refrigeration system. By venting flashgas generated after the transcritical expansion, the pressure can be kept at a safe level for all components situated in the liquid lines of a transcritical CO_2 system. For use in the gas bypass application the EKC326A controller is recommended.

Application 2

A liquid expansion valve is typically used for injection in plate heat exchangers of CO_2/CO_2 cascades, or as an expansion valve for CO_2 evaporators. For the

liquid injection applications CCM is used with EKC 316A controller.

Electrically operated valves for CO₂, type CCM

Valve operation (Cont.)

Electrically operated valves for CO₂, type CCM

Valve operation (Cont.)

are the total system evaporating capacity at the

given evaporating temperature.

Technical brochure	Electrically operated valves for CO_2 , type CCM	
Sizing and capacities	The following tables indicate nominal capacities of the valve in the gas bypass application and in the liquid expansion application with R744 (CO ₂) as refrigerant. Capacities are given for varying operating conditions within the normal range	of the valve. If the capacity shown in the table is higher than 75% of the required capacity, then it is recommended to use a valve one size larger, or as an alternative, to use an additional valve in parallel.
Gas Bypass Application	The capacities shown are based on the amount of flash gas produced when expanding from	optimal high pressure setting (89 bar) as set by the Danfoss EKC326A controller. The capacities shown

supercritical CO₂ before the transcritical expansion

valve (ICMTS) at 35°C and the corresponding

CCM 10- Gas Bypass Application - System Evaporator Capacity [kW] Evaporating temperature [°C] -40 -35 -30 -25 -20 -15 -10 -5 Inlet Pressure [bar] 7

		CCM 20 - Gas Bypass Application - System Evaporator Capacity [kW]													
		Evaporating temperature [°C]													
		-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
	15	40	33	17											
	20	61	57	53	42	13									
oar]	25	79	79	76	72	62	40								
ssure [}	30	98	99	99	95	90	80	59							
	35	119	120	120	120	115	110	98	75	14					
t Pre	40	143	143	143	144	144	137	130	115	88	22				
lule	45	170	170	170	171	171	170	161	151	133	98				
	50	202	203	203	204	204	203	202	188	174	150	105			
	55	244	246	246	247	247	246	244	232	221	201	167	107		
	60	308	310	311	311	311	310	308	305	285	268	237	186	98	
	65				442	442	440	437	432	425	390	357	303	219	58
	70						1219	1209	1195	1173	1092	1019	899	715	435

					CCM 30	- Gas Bypa	ass Applica	tion - Syst	em Evapor	ator Capa	ity [kW]				
							Fvaporat	ing temper	ature [°C]						
		-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
	15	59	50	26											
	20	91	86	79	63	20									
bar]	25	118	119	113	107	93	61								
re []	30	147	148	148	142	135	120	88							
nssa	35	179	180	180	180	172	164	147	112	20					
t Pre	40	214	215	216	216	216	205	195	173	132	32				
lule	45	255	256	256	257	256	256	241	227	199	148				
	50	303	305	305	306	306	305	303	282	262	224	158			
	55	367	368	370	370	370	369	366	348	332	302	250	160		
	60	462	465	466	467	466	465	462	457	428	402	355	279	147	
	65				663	662	660	655	648	638	585	536	455	328	87
	70						1829	1814	1792	1760	1639	1529	1349	1072	652

Electrically operated valves for CO₂, type CCM

Gas Bypass Application (continued)

					CC14 40	C D					24-171-34/3				
					CCM 40	- Gas Bypa	ass Applica	tion - Syst	em Evapor	ator Capa	city [KW]				
							Evaporat	ting temper	rature [°C]						
		-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
	15	104	87	45											
	20	159	151	139	111	35									
oar]	25	207	208	198	188	162	106								
Le []	30	258	259	259	248	237	210	155							
l nss	35	313	314	315	316	301	288	257	196	36					
t Pre	40	375	376	377	378	377	359	341	303	231	56				
l le	45	445	447	449	449	449	447	422	397	348	258				
	50	531	533	535	535	535	533	530	494	458	392	277			
	55	642	645	647	648	647	645	641	608	581	528	437	280		
	60	809	813	816	817	816	813	808	800	749	703	622	488	257	
	65				1160	1159	1155	1146	1134	1116	1024	938	797	574	153
	70						3200	3175	3136	3080	2868	2675	2361	1876	1142

Liquid Expansion Application

Valve capacities when operating as an expansion valve are given in the following table for different evaporating tempratures (t_e) and varying pressure differences over the valve. The values shown are based on 0.1 K liquid subcooling at the inlet to

the valve and no useful superheat. Capacities can be adjusted for different levels of subcooling by multiplying the capacity found in the table below, by the capacity correction factor found in the subsequent table.

						CCM 10-L	.iquid Exp	pansion A	pplicatio	n - Evapo	rator Cap	acity [kW	']				
								Pressu	ire drop ∆	p [bar]							
		2	4	6	8	10	12	14	16	20	24	28	32	36	40	44	48
	-40	53	73	86	96	103	110	115	119	126	130	132	133	133	131	128	125
ប	-35	51	70	83	93	101	107	112	116	122	126	129	130	129	127	125	120
t,	-30	50	68	80	90	97	103	108	113	119	123	125	125	125	123	120	115
ture	-25	47	65	77	86	94	100	105	109	114	118	120	12 1	120	118	114	109
bera	-20	45	62	74	83	90	96	100	104	110	113	115	115	114	111	107	100
u du a	-15	43	59	70	79	85	9 1	95	99	104	107	109	108	107	103	98	89
jg te	-10	41	56	66	74	81	86	90	93	98	101	102	10 1	98	94	86	
ratir	-5	38	52	62	70	75	80	84	87	91	93	93	92	88	81		
ode	0	35	48	57	61	70	74	77	80	83	85	81	81	75			
Å	5	32	44	52	59	63	67	70	72	74	74	72	66				
	10	29	40	47	52	56	59	61	63	64	62	54					
	15	25	34	40	45	48	50	51	52	50							
	20	21	28	33	36	38	38	38	35								
	25	16	20	23	23												

						CCM 20 - L	iquid Exp.	oansion A	pplicatio	n - Evapo	rator Cap	acity [kW	']				
								Pressu	ire d r op ∆	p [bar]							
		2	4	6	8	10	12	14	16	20	24	28	32	36	40	44	48
	-40	104	142	167	187	202	215	225	233	245	253	258	260	259	256	251	243
	-35	101	137	162	181	197	209	219	227	239	247	251	253	252	249	243	235
t, [0	-30	97	132	157	175	190	202	212	220	232	240	244	245	244	240	234	225
ture	-25	93	127	151	169	183	195	204	212	224	231	235	236	234	230	223	212
bera	-20	89	121	144	162	175	187	196	203	214	221	224	225	222	217	209	196
dua	-15	84	115	137	154	167	178	186	193	204	210	212	212	208	202	191	175
ig te	-10	79	109	129	145	158	168	176	182	192	197	198	197	192	183	169	
ratir	-5	74	102	121	136	147	157	164	170	178	182	182	179	172	159		
apo	0	69	94	112	126	136	144	151	156	163	165	164	158	146			
ЦČ	5	63	86	102	114	124	131	136	141	145	145	141	129				
	10	56	77	91	102	110	116	120	123	124	121	106					
	15	49	67	79	87	93	98	100	101	97							
	20	41	55	64	70	74	75	74	68								
	25	30	40	45	45												

Electrically operated valves for CO₂, type CCM

					C	CM 30 - L	iquid Exp	oansion A	pplicatio	n - Evapo	rator Cap	acity [kW	1				
								Pressu	ire d r op ∆	p [bar]							
		2	4	6	8	10	12	14	16	20	24	28	32	36	40	44	48
	-40	161	219	259	289	312	331	347	360	379	391	398	401	400	396	388	376
ົ	-35	155	212	251	280	304	322	338	350	369	381	388	39 1	390	384	376	363
ţ,	-30	150	204	242	271	294	312	327	340	358	370	377	379	377	371	361	348
ture	-25	143	196	233	261	283	301	316	328	345	357	363	364	361	355	344	328
bera	-20	137	188	223	250	271	288	302	314	331	341	346	347	343	335	322	303
temp	-15	130	178	212	237	258	274	288	299	314	324	328	327	322	312	296	270
lg te	-10	123	168	200	224	243	25 9	271	282	296	304	306	304	297	283	261	
ratir	-5	115	157	187	210	228	242	253	263	275	281	282	277	266	246		
apo	0	106	146	173	194	210	223	233	241	251	255	253	244	225			
Ě	5	97	133	158	177	19 1	202	211	217	224	224	217	199				
	10	87	119	141	157	169	178	185	189	192	186	164					
	15	76	104	122	135	144	151	155	156	150							
	20	63	85	99	108	114	116	114	104								
	25	47	62	69	70												

					(CCM 40 - L	.iquid Exp	oansion A	pplicatio	n - Evapo	rator Cap	acity [kW	'I				
								Pressu	re d r op ∆	p [bar]							
		2	4	6	8	10	12	14	16	20	24	28	32	36	40	44	48
	-40	276	377	445	496	537	569	596	618	651	672	685	689	688	680	666	646
ົ	-35	267	364	431	482	522	554	580	602	635	656	667	672	669	661	646	624
۲ ۲	-30	257	351	416	466	505	537	562	584	616	636	647	651	647	637	621	597
ture	-25	246	337	400	448	486	517	542	563	594	613	623	626	621	609	591	564
bera	-20	235	322	383	429	466	495	52 0	539	569	587	595	596	590	576	554	521
ame	-15	223	306	364	408	443	471	494	513	540	556	563	562	553	536	508	463
1g te	-10	211	289	344	385	418	445	466	484	509	522	527	523	510	486	448	
ratir	-5	197	271	322	361	39 1	416	435	451	473	483	484	476	457	422		
apo	0	183	251	298	334	361	384	401	415	432	438	434	419	287			
à	5	167	229	272	304	328	348	2 6 2	373	385	386	373	341				
	10	150	205	243	270	29 1	307	318	326	330	320	281					
	15	131	178	209	232	248	259	266	268	258							
	20	108	146	170	186	195	199	196	180								
	25	81	106	119	121												

Inlet			Capa	city corre	ction fact	tor for liq	uid subco	oling		
pressure					Subcoc	ling [K]				
[bar]	4	10	15	20	25	30	35	40	45	50
20	1.04	1.1	1.15	1.2	1.24	1.29	1.34			
40	1.06	1.15	1.22	1.29	1.36	1.42	1.49	1.55	1.62	1.68
60	1.11	1.26	1.37	1.48	1.58	1.67	1.78	1.86	1.96	2.05

Ordering

Valve incl. actuator

Single pack

	Connectio	ns (Combi)	Code nos
Туре	Weld ¹⁾ [in]	So l der ODF x ODF [in]	single pack
CCM 10	1/2 x 1/2	5/8 x 5/8	027H7188
CCM 20	3/4 x 3/4	7/8 x 7/8	027H7187
CCM 30	1 x 1	1 1/8 x 1 1/8	027H7186
CCM 40	1 x 1	1 1/8 x 1 1/8	027H7185

¹⁾OD according to EN 10220

Spare parts

Actuator CCM CO2 valve, code no. **027H7184**

Wire 4 x 0.5 x 8000 with M12 female, code no. **034G2323** AST-G driver manual box for operating the valve, code no. **034G0013**

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation

Technical brochure

Electrically operated valves for CO₂, type CCM

Tune	۲	l,	F	l ₂	H₃		L	-1	ø	D 1	Wei	ght
туре	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	kg	lb.
ссм	26.2	1.0	120.0	4.7	225.0	8.9	53.0	2.1	62.0	2.4	1.8	4.0

For further information please contact Danfoss